Answer to Question #337146 in Biochemistry for Mathias

Question #337146

State three errors of nucleic acid metabolism, note in each case the defective enzyme




1
Expert's answer
2022-05-05T10:52:02-0400

If an enzyme is missing or has diminished activity, the pathway becomes blocked, and the formation of the final product is deficient, resulting in disease. Low activity of an enzyme may result in the subsequent accumulation of the enzyme’s substrate, which may be toxic at high levels. In addition, minor metabolic pathways that usually lie dormant may be activated when a substrate accumulates, possibly forming atypical, potentially toxic, products. Each cell in the body contains thousands of metabolic pathways, all of which are interlinked to some extent, so that a single blockage may affect numerous biochemical processes.

The consequences of metabolic imbalance may be severe; intellectual disability, seizures, decreased muscle tone, organ failure, blindness, and deafness may occur, depending on which enzyme is dysfunctional. In recent years, it has become apparent that even some conditions associated with multiple congenital anomalies (e.g., Smith-Lemli-Opitz syndrome) have an underlying metabolic cause.

Genetic mutations

The molecular blueprint for nearly all enzymes, structural proteins, cellular transport proteins, and other constituents that are responsible for carrying out the complex reactions involved in metabolism is stored as deoxyribonucleic acid (DNA) in the nucleus of the cell. A small amount of DNA of critical importance to metabolism also is contained in cellular organelles called mitochondria. DNA is organized into smaller units, termed genes, which direct the production of specific proteins or enzymes. In 1945 American geneticists George Beadle and Edward Tatum proposed a central tenet of molecular biology, the “one gene-one enzyme” principle, which states that a single gene directs the synthesis of a single enzyme. This principle has been refined to account for the fact that not all gene products are enzymes and that some enzymes are composed of multiple structural units encoded by different genes. Nevertheless, the one gene-one enzyme theory had immediate implications when applied to Garrod’s initial theories regarding inborn errors of metabolism. Inherited metabolic diseases were postulated to occur when a gene is mutated in such a way as to produce a defective enzyme with diminished or absent function. In 1948 methemoglobinuria became the first human genetic disease to be identified as being caused by an enzyme defect. In 1949 American chemist Linus Pauling and colleagues demonstrated that a mutation causes a structural alteration in a protein; hemoglobin (the protein in red blood cells that carries oxygen to the tissues of the body) extracted from normal human red blood cells was shown to behave differently from hemoglobin taken from persons with the hereditary disease sickle-cell anemia. Thus, it was determined that mutant genes that direct the formation of abnormal proteins with altered function cause inborn errors of metabolism.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS