Chemical reaction:
H2(g) + I2(g) ↔ 2HI(g)
Given:
[H]in = 10-3M
[I]in = 2*10-3M
[HI]eq = 1.87*10-3M
this problem is solved by using ICE table method:
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n H_2 & I_2 & 2HI \\\\ \\hline\n 1*10^{-3}M & 2*10^{-3}M & 0 \\\\\n \\hdashline\n x & x & 2x\\\\ \\hdashline [H_{2}]_{eq} & [I_{2}]_{eq} & 1.87*10^{-3}M\n\\end{array}"
Firstly we should find x(change) in the ICE table:
2x=1.87*10-3
x=9.35*10-4
a) Equilibrium concentrations of the two reactants:
[H]eq = 10-3 - 9.35*10-4 = 6.5 * 10-5 M
[I]eq = 2*10-3 - 9.35*10-4 = 1.065 * 10-3 M
b) Kc of the reaction taking place:
"K_c= \\dfrac{[HI]^2}{[H][I]}\t= \\dfrac{(1.87*10^{-3})^2}{(1.065*10^{-3})(6.5*10^{-5})}\t=50.5"
"K_c=50.5"
Comments
Leave a comment