J(t) = 1/t²-2t+1
Question
Construct a table of values of the following functions using the interval of -5 to 5.
"j(t)=\\frac{1}{t^2-2t+1}"
solution
The points lies between the interval (−5,5) are −4,−3,−2,−1,0,1,2,3,4
Substitute t=−4 in the function "j(t)=\\frac{1}{t^2-2t+1}"
"j(-4)=\\frac{1}{(-4)^2-2(-4)+1}\\\\=\\frac{1}{16+8+1}\\\\=\\frac{1}{25}"
Substitute t=−3 in the function "j(t)=\\frac{1}{t^2-2t+1}"
"j(-3)=\\frac{1}{(-3)^2-2(-3)+1}\\\\=\\frac{1}{9+6+1}\\\\=\\frac{1}{16}"
Substitute t=−2 in the function "j(t)=\\frac{1}{t^2-2t+1}"
"j(-2)=\\frac{1}{(-2)^2-2(-2)+1}\\\\=\\frac{1}{4+4+1}\\\\=\\frac{1}{9}"
Substitute t=−1 in the function "j(t)=\\frac{1}{t^2-2t+1}"
"j(-1)=\\frac{1}{(-1)^2-2(-1)+1}\\\\=\\frac{1}{1+2+1}\\\\=\\frac{1}{4}"
Similarly, find the other values of j(0),j(1),j(2),j(3),j(4)
j0,j1,j2,j3,j4.
Make a table of values of the given functions using the interval of -5 to 5.
Comments
Leave a comment