Answer to Question #251906 in Algebra for moe

Question #251906

Consider the equation "\\frac{x}{2+i}+\\frac{iy}{2-i}=\\frac{3}{1-2i}" , where x and y are real numbers. Which of the following are correct?


  1. x=−4 and y =-5
  2. x=5 and y=4
  3. x and y satisfy the pair of equations  2xy=3 and -x+2y=6
  4. x=4 and y=5
  5. x and y satisfy the pair of equations 2x+y=3 and x-2y=-6
1
Expert's answer
2021-10-18T15:14:55-0400

1)

L.H.S="\\frac{x}{2+i}+\\frac{iy}{2-i}"

put x=-4 and y=-5.

"\\frac{-4}{2+i}+\\frac{-i5}{2-i}\\\\\n\\frac{-4(2-i)-5i(2+i)}{(2+i)(2-i)}\\\\\n\\frac{-4(2-i)-5i(2+i)}{2^2-i^2}\\\\\n\\frac{-3-6i}{5}\\\\"

Not equal to RHS.

2)

put x=5 and y=4.

"LHS=\\frac{5}{2+i}+\\frac{i4}{2-i}\\\\\n\\frac{5(2-i)+4i(2+i)}{(2+i)(2-i)}\\\\\n\\frac{5(2-i)+4i(2+i)}{2^2-i^2}\\\\\n\\frac{6+3i}{5}\\\\"

Not equal to RHS.

3)

solving equation

2x-y=3 and -x+2y=-6, we get x=4, y=5.

"LhS=\\frac{4}{2+i}+\\frac{i5}{2-i}\\\\\n\\frac{4(2-i)+5i(2+i)}{(2+i)(2-i)}\\\\\n\\frac{4(2-i)+5i(2+i)}{2^2-i^2}\\\\\n\\frac{3+6i}{5}\\\\"

Not equal to RHS.

4)

putx=4,y=5.

"LhS=\\frac{4}{2+i}+\\frac{i5}{2-i}\\\\\n\\frac{4(2-i)+5i(2+i)}{(2+i)(2-i)}\\\\\n\\frac{4(2-i)+5i(2+i)}{2^2-i^2}\\\\\n\\frac{3+6i}{5}\\\\"

Not equal to RHS.

5)

Solving equations 2x+y=3 and x-2y=-6, we get x=0,y=3.

"LhS=\\frac{0}{2+i}+\\frac{3i}{2-i}\\\\\n\\frac{3i}{2-i}\\\\\n\\text{By rationalise, we get}\\\\\n\\frac{-3+6i}{5}\\\\"

Not equal to RHS.


No options are correct.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog