Answer to Question #129148 in Analytic Geometry for Sym

Question #129148

The triangle STV has its vertices at s ( 2,5).The angle TVS is a right angle and the equation of VS is 2x+3y -1=0

Find the distance of S from the line VT

if ST has a gradient of 1/3,find the angle between the lines ST and TV


1
Expert's answer
2020-08-17T19:17:12-0400

"2\\cdot 2+3\\cdot 5-1=18\\neq0 \\Rightarrow (2,5)\\not\\in VS :\\quad 2x+3y-1=0 \\Rightarrow T=T(2,5)\\\\\nST:\\quad y=\\frac{1}{3}x+b, \\quad T\\in ST: \\quad y=\\frac{1}{3}x+b \\Rightarrow b=\\frac{13}{3}\\\\\nS=\\begin{cases} 2x+3y-1=0\\\\y=\\frac{1}{3}x+\\frac{13}{3} \\end{cases} \\Rightarrow S=S(-4,3).\\\\\nTV: \\quad y-5=\\frac{-1}{\\frac{-2}{3}}(x-2)=\\frac{3}{2}(x-2).\\\\\ncos(\\alpha)=\\frac{\\frac{1}{3}\\cdot\\frac{3}{2}+(-1)\\cdot(-1)}{\\sqrt{\\frac{1}{9}+1}\\cdot \n\\sqrt{\\frac{9}{4}+1}}=\\frac{9}{\\sqrt{130}} \\Rightarrow\\alpha=arccos(\\frac{9}{\\sqrt{130}}).\\\\\n\\rho(S,TV)=\\frac{|1.5\\cdot(-4)-3+2|}{\\sqrt{\\frac{9}{4}+1}}=\\frac{14}{\\sqrt{13}};"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog