Answer to Question #347216 in Analytic Geometry for Jedy

Question #347216

Given r1 = 3i − 4j + 3k, r2 = 5i + 3j − 6k, r3 = 2i + 7j + 3k and r4 = 4i + 3j + 5k.





Find the scalars a, b and c such that r4 = ar1 + br2 + cr3







1
Expert's answer
2022-06-03T12:34:14-0400
"3a+5b+2c=4"

"-4a+3b+7c=3"

"3a-6b+3c=5"

"A=\\begin{pmatrix}\n 3 & 5 & 2 & & 4 \\\\\n -4 & 3 & 7 & & 3 \\\\\n 3 & -6 & 3 & & 5 \\\\\n\\end{pmatrix}"

"R_1=R_1\/3"


"\\begin{pmatrix}\n 1 & 5\/3 & 2\/3 & & 4\/3 \\\\\n -4 & 3 & 7 & & 3 \\\\\n 3 & -6 & 3 & & 5 \\\\\n\\end{pmatrix}"

"R_2=R_2+4R_1"


"\\begin{pmatrix}\n 1 & 5\/3 & 2\/3 & & 4\/3 \\\\\n 0 & 29\/3 & 29\/3 & & 25\/3 \\\\\n 3 & -6 & 3 & & 5 \\\\\n\\end{pmatrix}"

"R_3=R_3-3R_1"


"\\begin{pmatrix}\n 1 & 5\/3 & 2\/3 & & 4\/3 \\\\\n 0 & 29\/3 & 29\/3 & & 25\/3 \\\\\n 0 & -11 & 1 & & 1 \\\\\n\\end{pmatrix}"

"R_2=3R_2\/29"


"\\begin{pmatrix}\n 1 & 5\/3 & 2\/3 & & 4\/3 \\\\\n 0 & 1 & 1 & & 25\/29 \\\\\n 0 & -11 & 1 & & 1 \\\\\n\\end{pmatrix}"

"R_1=R_1-5R_2\/3"


"\\begin{pmatrix}\n 1 & 0 & -1 & & -3\/29 \\\\\n 0 & 1 & 1 & & 25\/29 \\\\\n 0 & -11 & 1 & & 1 \\\\\n\\end{pmatrix}"

"R_3=R_3+11R_2"


"\\begin{pmatrix}\n 1 & 0 & -1 & & -3\/29 \\\\\n 0 & 1 & 1 & & 25\/29 \\\\\n 0 & 0 & 12 & & 304\/29 \\\\\n\\end{pmatrix}"

"R_3=R_3\/12"


"\\begin{pmatrix}\n 1 & 0 & -1 & & -3\/29 \\\\\n 0 & 1 & 1 & & 25\/29 \\\\\n 0 & 0 & 1 & & 76\/87 \\\\\n\\end{pmatrix}"

"R_1=R_1+R_3"


"\\begin{pmatrix}\n 1 & 0 & 0 & & 67\/87 \\\\\n 0 & 1 & 1 & & 25\/29 \\\\\n 0 & 0 & 1 & & 76\/87 \\\\\n\\end{pmatrix}"

"R_2=R_2-R_3"


"\\begin{pmatrix}\n 1 & 0 & 0 & & 67\/87 \\\\\n 0 & 1 & 0 & & -1\/87 \\\\\n 0 & 0 & 1 & & 76\/87 \\\\\n\\end{pmatrix}"


"a=\\dfrac{67}{87}, b=-\\dfrac{1}{87}, c=\\dfrac{76}{87}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS