Find the first and second derivatives of the following and simplify whenever possible:
x=e^t: y=te^-t
"\\frac{dy}{dx}=\\frac{\\frac{dy}{dt}}{\\frac{dx}{dt}}=\\frac{e^{-t}-te^{-t}}{e^t}=(1-t)e^{-2t}."
"\\frac{d^2y}{dx^2}=\\frac{\\frac{d^2y}{dt^2}\\frac{dx}{dt}-\\frac{dy}{dt}\\frac{d^2x}{dt^2}}{(\\frac{dx}{dt})^3}=\n\\frac{(t-2)e^{-t}*e^t-(1-t)e^{-t}*e^t}{e^{3t}}=(2t-3)e^{-3t}."
Comments
Leave a comment