β« β« π₯π¦ππ₯ππ¦ 2π¦
π¦
2
In unit circle we need to find the integral value.
"\\int \\int xydxdy= \\int_0^{2\\pi}\\int_0^1r^3sin\\theta cos\\theta drd\\theta\\\\\n=\\int_0^{2\\pi}[\\frac{r^4}{4}]_0^1sin\\theta cos\\theta drd\\theta\\\\\n=\\int_0^{2\\pi}\\frac{1}{4}sin\\theta cos\\theta drd\\theta\\\\\n=\\int_0^{2\\pi}\\frac{1}{8}2sin\\theta cos\\theta drd\\theta\\\\\n=\\int_0^{2\\pi}\\frac{1}{8}sin(2\\theta)drd\\theta\\\\\n=\\frac{1}{8}[\\frac{-cos(2\\theta)}{2}]_0^{2\\pi}\\\\\n=\\frac{1}{16}[-1+1]\\\\\n=0"
Comments
Leave a comment