Evaluate
∫ √tanx. sec4x dx
π
4
Also integrate the definite integral using MATLAB command.
"I=\\int^{\\pi \/4}_0 \\sqrt{tanx}sec^4x dx=\\int^{\\pi \/4}_0 \\sqrt{tanx}(1+tan^2x)sec^2xdx"
"tanx=t,sec^2x=dt"
"I=\\int(t^{1\/2}+t^{5\/2})dt=2t^{3\/2}\/3+2t^{7\/2}\/7=2tan^{3\/2}x\/3+2tan^{7\/2}x\/7|^{\\pi\/4}_0="
"=2\/3+2\/7=20\/21"
MATLAB code
syms x
expr=sqrt(tanx)*(secx)^4;
F=int(expr,0,pi/4)
Comments
Leave a comment