Find the dimensions of the right circular cone of least volume which can be
circumscribed about a right circular cylinder of radius 4 cm and height of 5 cm.
Given, "AB=CD=4\\ cm, AC=5\\ cm"
Let "AE=H\\ cm, AF=R\\ cm"
Then, "CE=H-5"
Since, triangle EDC and EFA are similar by AA rule, "\\dfrac{EC}{EA}=\\dfrac{CD}{AF}"
"\\Rightarrow \\dfrac{H-5}{H}=\\dfrac{4}{R}\n\\\\\\Rightarrow RH-5R=4H\n\\\\\\Rightarrow H=\\dfrac{5R}{R-4}\\ ...(i)"
Now, volume of cone, "V=\\dfrac13 \\pi R^2H"
"\\Rightarrow V=\\dfrac13 \\pi R^2(\\dfrac{5R}{R-4})\\ [Using \\ (i)]\n\\\\ \\Rightarrow V=\\dfrac53 \\pi (\\dfrac{R^3}{R-4})"
On differentiating w.r.t R,
"V'=\\dfrac53 \\pi (\\dfrac{(R-4)3R^2-R^3(1)}{(R-4)^2})\n\\\\ \\Rightarrow V'=\\dfrac53 \\pi \\dfrac{3R^3-12R^2-R^3}{(R-4)^2}\n\\\\ \\Rightarrow V'=\\dfrac53 \\pi \\dfrac{2R^2(R-6)}{(R-4)^2}\\ ...(ii)"
Now, put V'=0
"\\dfrac53 \\pi \\dfrac{2R^2(R-6)}{(R-4)^2}=0\n\\\\\\Rightarrow R-6=0\n\\\\\\Rightarrow R=6"
Again, differentiating (ii) w.r.t. R,
"\\\\ V''=\\dfrac{10}3 \\pi \\dfrac{d}{dR}(\\dfrac{R^3-6R^2}{(R-4)^2})\n\\\\=\\dfrac{10}3 \\pi (\\dfrac{(R-4)^2(3R^2-12R)-(R^3-6R^2)2(R-4)}{(R-4)^4})\n\\\\>0\\ for \\ R=6"
Thus, minima exists.
Now, put R=6 in (i).
"H=\\dfrac{5(6)}{6-4}=15\\ cm"
Hence, the dimensions of the right circular cone are R=6 cm, H=15 cm.
Comments
Leave a comment