9. Find the expression for ∫︁∫︁∫︁∫︁
V
x
l−1y
m−1z
n−1 dx by DZ(Dirichlet’s Integral) in
the form of Gamma integrals, here V is the region x ≥ 0, y ≥ 0, z ≥ 0 and
x + y + z ≤ a.
Hint/Ans: Γ(l)Γ(m)Γ(n)
Γ(l + m + n + 1)
a
l+m+n
10. Evaluate ∫︁
1
1
√
1 − x4
dx
10.
"\\int^1_0dx\/\\sqrt{1-x^4}=B(1\/4,1\/2)\/4=1.311"
where beta function:
"B(x,y)=\\int^1_0t^{x-1}(1-t)^{y-1}dt"
"B(1\/4,1\/2)=\\int^1_0t^{-3\/4}(1-t)^{-1\/2}dt"
9.
Dirichlet’s Integral:
"\\int^{\\infin}_0\\frac{sinx}{x}dx=\\pi\/2"
for gamma function:
"\\Gamma(1-z)\\Gamma(z)=\\pi\/sin\\pi z"
Comments
Leave a comment