Q: Find the local and absolute extreme values of the function on the given interval. Also
specify the intervals where function is increasing or decreasing
π(π₯) = π₯2e-x
Domain: "(-\\infin, \\infin)"
Find the fist derivative with respect to "x"
"f'(x)=(x^2e^{-x})'=2xe^{-x}-x^2e^{-x}"Find the critical number(s)
"xe^{-x}(2-x)=0"
"x_1=0, x_2=2"
Critical numbers: "0, 2."
Find the second derivative with respect to "x"
"f''(x)=(2xe^{-x}-x^2e^{-x})'""=e^{-x}(2-4x+x^2)"
"f''(0)=e^{-0}(2-4(0)+(0)^2)=2>0"
"f''(0)=e^{-2}(2-4(2)+(2)^2)=-2e^{-2}<0"
i) If "x\\in [-1, 3]"
"f(3)=(3)^2e^{-3}=9e^{-3}"
"f(0)=(0)^2e^{-0}=0"
"f(2)=(2)^2e^{-2}=4e^{-2}"
The function "f(x)" has a local maximum with value of "4e^{-2}" at "x=2."
The function "f(x)" has a local minimum with value of at "x=0."
The function "f(x)" has the absolute maximum on "[-1, 3]" with value of "e" at "x=-1."
The function "f(x)" has the absolute minimum on "[-1, 3]" with value of at "x=0."
ii)
If "x<0, f'(x)<0, f(x)" decreases.
If "0<x<2, f'(x)>0, f(x)" increases.
If "x>2, f'(x)<0, f(x)" decreases.
The function "f(x)" increases on "(0, 2)."
The function "f(x)" decreases on "(-\\infin, 0)\\cup(2, \\infin)."
Comments
Leave a comment