Answer to Question #300344 in Calculus for Karly

Question #300344

1. Let f be the function deÖned by

f (x) = x^2/(-2x + 1)^2

(a) Determine the vertical and horizontal asymptotes (show all limits).

(b) Use the sign pattern for f'(x) to determine

(i) the interval(s) over which f rises and where it falls;

(ii) the local extrema.

(c) Use the sign pattern for f''(x) to determine

(i) where the graph of f is concave up and where it is concave down.

(ii) the inflection points (if any)


1
Expert's answer
2022-02-21T16:17:59-0500

(a)


"f (x) =\\dfrac{x^2 }{(-2x+1)^2}"

"-2x+1\\not=0=>x\\not=1\/2"

"D(f): (-\\infin, 1\/2)\\cup (1\/2 , \\infin)"


"\\lim\\limits_{x\\to(1\/2)^-}\\dfrac{x^2 }{(-2x+1)^2} =\\infin"

"\\lim\\limits_{x\\to(1\/2)^+}\\dfrac{x^2 }{(-2x+1)^2} =\\infin"

Vertical asymptote: "x=1\/2"


"\\lim\\limits_{x\\to-\\infin}\\dfrac{x^2 }{(-2x+1)^2} =\\lim\\limits_{x\\to-\\infin}\\dfrac{x^2\/x^2 }{(-2x\/x+1\/x)^2}"

"=\\lim\\limits_{x\\to-\\infin}\\dfrac{1}{(-2+1\/x)^2}=1\/4"


"\\lim\\limits_{x\\to\\infin}\\dfrac{x^2 }{(-2x+1)^2} =\\lim\\limits_{x\\to\\infin}\\dfrac{x^2\/x^2 }{(-2x\/x+1\/x)^2}"

"=\\lim\\limits_{x\\to\\infin}\\dfrac{1}{(-2+1\/x)^2}=1\/4"

Horizontal asymptote: "y=1\/4"

There is no slant (oblique) asymptote.


(b)


"f'(x)=(\\dfrac{x^2 }{(-2x+1)^2} )'"

"=\\dfrac{2x(-2x+1)^2-x^2(2)(-2)(-2x+1) }{(-2x+1)^4}"

"=\\dfrac{-4x^2+2x+4x^2}{(-2x+1)^3} =\\dfrac{2x}{(-2x+1)^3}"

Find critical number(s)


"f'(x)=0=>\\dfrac{2x}{(-2x+1)^3} =0"

"x=0"

(i)

If "x<0, f'(x)<0, f(x)" decreases.

If "0<x<1\/2, f'(x)>0, f(x)" increases.

If "x>1\/2, f'(x)<0, f(x)" decreases.

The function "f" increases on "(0, 1\/2)."

The function "f" decreases on "(-\\infin, 0)\\cup (1\/2, \\infin)."

(ii)

The function "f" has a local minimum at "x=0."

The function "f" has no a local maximum.


(c)


"f''(x)=(\\dfrac{2x }{(-2x+1)^3} )'"

"=2\\cdot\\dfrac{(-2x+1)^3-x(3)(-2)(-2x+1)^2 }{(-2x+1)^6}"

"=2\\cdot\\dfrac{-2x+1+6x}{(-2x+1)^4} =\\dfrac{8x+2}{(-2x+1)^4}"

Find the inflection point(s)


"f''(x)=0=>\\dfrac{8x+2}{(-2x+1)^4} =0"

"x=-1\/4"

(i)

If "x<-1\/4, f''(x)<0, f(x)" is concave down.

If "-1\/4<x<1\/2, f''(x)>0, f(x)" is concave up.

If "x>1\/2, f''(x)>0, f(x)" is concave up.

The function "f" is concave up on "(-1\/4, 1\/2)\\cup (1\/2, \\infin)."

The function "f" is concave down on "(-\\infin, -1\/4)."

(ii)

The function "f" has inflection point at "x=-1\/4."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog