Answer to Question #348806 in Calculus for Sarita bartwal

Question #348806

Check whether the sequence (an), where



an = 1/ (n+1) + 1/(n+2) +....+1/(2n) is convergent or not


1
Expert's answer
2022-06-08T01:40:23-0400

Consider


"1+\\dfrac{1}{2}+...+\\dfrac{1}{n}+\\dfrac{1}{n+1}+...+\\dfrac{1}{2n}""=(1+\\dfrac{1}{2}+...+\\dfrac{1}{n})+(\\dfrac{1}{n+1}+...+\\dfrac{1}{2n})"

Then



"\\dfrac{1}{n+1}+...+\\dfrac{1}{2n}=(1+\\dfrac{1}{2}+\\dfrac{1}{3}+...+\\dfrac{1}{n}""+\\dfrac{1}{n+1}+...+\\dfrac{1}{2n-1}+\\dfrac{1}{2n})-2(\\dfrac{1}{2}+\\dfrac{1}{4}+...+\\dfrac{1}{2n})""=1-\\dfrac{1}{2}+\\dfrac{1}{3}-\\dfrac{1}{4}+...+\\dfrac{1}{2n-1}-\\dfrac{1}{2n}""=\\displaystyle\\sum_{k=1}^{2n}\\dfrac{(-1)^{k+1}}{k}"

Consider "\\ln(1+x)" for "x\\in(-1, x]"



"\\ln(1+x)=\\displaystyle\\sum_{k=1}^{\\infin}\\dfrac{(-1)^{k+1}x^k}{k}"

Then for "x=1"



"\\ln2=\\ln(1+1)=\\displaystyle\\sum_{k=1}^{\\infin}\\dfrac{(-1)^{k+1}(1)^k}{k}""=\\displaystyle\\sum_{k=1}^{\\infin}\\dfrac{(-1)^{k+1}}{k}"

We see that



"\\lim\\limits_{n\\to\\infin}a_n=\\lim\\limits_{n\\to\\infin}(\\dfrac{1}{n+1}+...+\\dfrac{1}{2n})""=\\lim\\limits_{n\\to\\infin}\\displaystyle\\sum_{k=1}^{2n}\\dfrac{(-1)^{k+1}}{k}=\\displaystyle\\sum_{k=1}^{\\infin}\\dfrac{(-1)^{k+1}}{k}=\\ln2"

Therefore the sequence "(a_n)" is convergent.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS