Answer to Question #344843 in Complex Analysis for Dkay

Question #344843

given z1 = 2<45 degrees, z2 =3<120 degrees and z3 =4<180 degrees. determine the following and leave your answer in rectangular form.

  1. (z1)2+z2/z2+z3
  2. z1/z2z3


1
Expert's answer
2022-05-26T11:01:46-0400

1.


"(z_1)^2=(2)^2\\angle(2\\cdot45\\degree)=4\\angle90\\degree=4i"

"z_2+z_3=3\\angle120\\degree+4\\angle180\\degree"

"=3(-\\dfrac{1}{2}+\\dfrac{\\sqrt{3}}{2}i)+4(-1)"

"=-\\dfrac{11}{2}+\\dfrac{3\\sqrt{3}}{2}i"


"\\dfrac{z_2}{z_2+z_3}=\\dfrac{-\\dfrac{3}{2}+\\dfrac{3\\sqrt{3}}{2}i}{-\\dfrac{11}{2}+\\dfrac{3\\sqrt{3}}{2}i}=\\dfrac{3-3\\sqrt{3}i}{11-3\\sqrt{3}i}"

"=\\dfrac{(3-3\\sqrt{3}i)(11+3\\sqrt{3}i)}{121+27}"

"=\\dfrac{33+9\\sqrt{3}i-33\\sqrt{3}i+27}{148}"

"=\\dfrac{15}{37}-\\dfrac{6}{37}i"


"(z_1)^2+\\dfrac{z_2}{z_2+z_3}=4i+\\dfrac{15}{37}-\\dfrac{6}{37}i"


"=\\dfrac{15}{37}+\\dfrac{142}{37}i"



2.


"z_2z_3=3\\angle120\\degree(4\\angle180\\degree)""=3(4)\\angle(120\\degree+180\\degree)=12\\angle300\\degree"

"=12(\\dfrac{1}{2}-\\dfrac{\\sqrt{3}}{2}i)=6-6\\sqrt{3}i"

"\\dfrac{z_1}{z_2z_3}=\\dfrac{2}{12}\\angle(45\\degree-300\\degree)"

"=\\dfrac{1}{6}(\\cos(-255\\degree)+i\\sin(-255\\degree))"

"=\\dfrac{1}{6}(\\cos(105\\degree)+i\\sin(105\\degree))"

"\\dfrac{z_1}{z_2z_3}=\\dfrac{\\sqrt{2}+\\sqrt{2}i}{6-6\\sqrt{3}i}"


"=\\dfrac{(\\sqrt{2}+\\sqrt{2}i)(6+6\\sqrt{3}i)}{36+108}"

"=\\dfrac{(\\sqrt{2}+\\sqrt{6}i+\\sqrt{2}i-\\sqrt{6})}{24}"

"=-\\dfrac{\\sqrt{6}-\\sqrt{2}}{24}+\\dfrac{\\sqrt{2}+\\sqrt{6}}{24}i"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS