Let the moisture content present in the sheet at any time t be M.
dryer loses moisture content at "\\dfrac{-dM}{dt}"
"\\dfrac{-dM}{dt}= kM"
(k = proportionality constant)
"\\dfrac{dM}M = - k dt"
Integrating,
"\\log_e^{\\dfrac M{M_0}}=-kt"
(initial moisture content at t = 0 be M0)
"M = M_o e^{-kt}" ⇒ (1)
First 10 mins, t = 10, "M =\\dfrac {M_{0}}{2}"
"\\dfrac{M_{0}}2 = M_{0} \u00d7e ^{ (- k \u00d710)}\\\\\nk = \\dfrac{\\log e ^ 2}{10}=\\dfrac 15" ⇒ (2)
Merging, equations 1 and 2,
"\\dfrac{M}{M_0}=e^{-\\frac t5}\u21d2\\dfrac{1}{100} = e^{-\\frac t5}"
"t =23.03\\textsf{ minutes}"
Comments
Leave a comment