write the ordinary differential equation (1+sin y)dx = (2ycosy-x(secy-tan y))dy
"\\left(\\mathrm{1}+\\mathrm{sin(}y\\mathrm{)}\\right)dx{}{}\\ \\ =\\ \\ \\left(\\mathrm{2}y\\ \\mathrm{cos}\\left(y\\right)\\ \\ -\\ \\ x\\left(\\mathrm{sec}\\left(y\\right)\\ \\ -\\ \\ \\mathrm{tan}\\left(y\\right)\\right)\\right)dy \\\\\n\n \\\\\n\n\\frac{dx}{dy}\\ =\\ \\ \\frac{\\mathrm{2}y\\ \\mathrm{cos}\\left(y\\right)\\ \\ -\\ \\ x\\left(\\mathrm{sec}\\left(y\\right)\\ \\ -\\ \\ \\mathrm{tan}\\left(y\\right)\\right)}{\\left(\\mathrm{1}+\\mathrm{sin}\\left(y\\right)\\right)} \\\\\n\n \\\\\n\n\\frac{dx}{dy}\\ +\\frac{\\ x\\left(\\mathrm{sec}\\left(y\\right)\\ \\ -\\ \\ \\mathrm{tan}\\left(y\\right)\\right)}{\\left(\\mathrm{1}+\\mathrm{sin}\\left(y\\right)\\right)}=\\ \\ \\frac{\\mathrm{2}y\\ \\mathrm{cos}\\left(y\\right)\\ \\ }{\\left(\\mathrm{1}+\\mathrm{sin}\\left(y\\right)\\right)}\\ \\ \\ \\ \\ \\left(First\\ \\ Order\\ \\ Linear\\ \\ Equation\\right) \\\\\n\n \\\\\n\nIF\\ \\ =\\ \\ e^{\\int{\\frac{\\ \\left(\\mathrm{sec}\\left(y\\right)\\ \\ -\\ \\ \\mathrm{tan}\\left(y\\right)\\right)}{\\left(\\mathrm{1}+\\mathrm{sin}\\left(y\\right)\\right)}dy}}\\ \\ \\ =\\ \\ e^{\\frac{-\\mathrm{1}}{\\left(\\mathrm{1}+\\mathrm{sin}\\left(y\\right)\\right)}} \\\\\n\n \\\\\n\nx\\ \\ e^{\\frac{-\\mathrm{1}}{\\left(\\mathrm{1}+\\mathrm{sin}\\left(y\\right)\\right)}}\\ \\ \\ =\\ \\ \\int{\\frac{\\mathrm{2}y\\ \\mathrm{cos}\\left(y\\right)\\ \\ }{\\left(\\mathrm{1}+\\mathrm{sin}\\left(y\\right)\\right)}}e^{\\frac{-\\mathrm{1}}{\\left(\\mathrm{1}+\\mathrm{sin}\\left(y\\right)\\right)}}\\ \\ dy\\ \\ \\ \\ +\\ \\ C \\\\\n \\\\\nx\\ \\ =\\ \\ \\ \\ e^{\\frac{\\mathrm{1}}{\\left(\\mathrm{1}+\\mathrm{sin}\\left(y\\right)\\right)}}\\ \\int{\\frac{\\mathrm{2}y\\ \\mathrm{cos}\\left(y\\right)\\ \\ }{\\left(\\mathrm{1}+\\mathrm{sin}\\left(y\\right)\\right)}}e^{\\frac{-\\mathrm{1}}{\\left(\\mathrm{1}+\\mathrm{sin}\\left(y\\right)\\right)}}\\ \\ dy\\ \\ \\ \\ +\\ \\ \\ Ce^{\\frac{\\mathrm{1}}{\\left(\\mathrm{1}+\\mathrm{sin}\\left(y\\right)\\right)}}\\ \\\\\n \\\\\nx\\left(y\\right)=\\ \\ \\ \\ e^{\\frac{\\mathrm{1}}{\\left(\\mathrm{1}+\\mathrm{sin}\\left(y\\right)\\right)}}\\ \\int{\\frac{\\mathrm{2}y\\ \\mathrm{cos}\\left(y\\right)\\ \\ }{\\left(\\mathrm{1}+\\mathrm{sin}\\left(y\\right)\\right)}}e^{\\frac{-\\mathrm{1}}{\\left(\\mathrm{1}+\\mathrm{sin}\\left(y\\right)\\right)}}\\ \\ dy\\ \\ \\ \\ +\\ \\ \\ Ce^{\\frac{\\mathrm{1}}{\\left(\\mathrm{1}+\\mathrm{sin}\\left(y\\right)\\right)}}"
Comments
Leave a comment