Solution;
(1)
"g_p=\\frac15\u00d79.81=1.962m\/s^2"
Calculate surface are of earth;
"S.A_e=4\u03c0r^2"
"S.A_e=4\u00d7\u03c0\u00d76400^2=514718540.4km^2"
Now;
"S.A_p=1.025S.A_e=527586503.9km^2=4\u03c0r_p^2"
Hence;
"r_p=6479.51km"
But;
"g_p=\\frac{GM}{r_p^2}" My
Therefore;
"M_p=\\frac{g_p\u00d7r_p^2}{G}=\\frac{1.962\u00d7(6479510)^2}{6.674\u00d710^{-11}}"
"M_p=1.234\u00d710^{24}kg"
The escape velocity;
"v_e=\\sqrt{\\frac{2GM}{r}}"
"v_e=\\sqrt{\\frac{2\u00d76.674\u00d710^{-11}\u00d71.234\u00d710^{24}}{6479510}}"
"v_e=5042.37m\/s"
"v_e=5.04km\/s"
(2)
W=16lb
W=mg
"m=\\frac Wg=\\frac{16}{32}=0.5lbm"
"V(0)=10ft\/s"
Aire resistance =0.25v
Hence;
"\\frac{dv}{dt}+0.5v=32"
Integrating factor;
"I.F=e^{0.5dt}=e^{0.5t}"
The solution is;
"ve^{0.5t}=32\\int e^{0.5t}dt+C"
"v(t)=\\frac{64e^{0.5t}+C}{e^{0.5t}}"
"v(t)=64+Ce^{0.5t}"
"v(0)=10ft\/s"
"10=64+C"
Therefore;
"C=-54"
Hence;
"v(t)=64-54e^{0.5t}"
Limiting velocity is ;
"64ft\/s"
Velocity after 5 second;
"v(5)=64-54e^{0.5\u00d75}=-59.57ft\/s"
Comments
Leave a comment