y(2x−y+1)dx+x(3x−4y+3)dy=0
M(x,y)dx+N(x,y)dy=0
M=y(2x−y+1)=2xy−y2+y
N=x(3x−4y+3)=3x2−4xy+3x
dydM=2x−2y+1
dxdN=6x−4y+3
dydM=dxdN ,thus the equation is not exact
M1(dxdN−dydM)=y(2x−y+1)6x−4y+3−2x+2y−1
=y(2x−y+1)4x−2y+2
=y(2x−y+1)2(2x−y+1)=y2 which is a function of y
I.F=e∫y2dy=e2lny=y2
Multiplying both sides of the equation by y2 we get
y3(2x−y+1)dx+xy2(3x−4y+3)dy=0
(2xy3−y4+y3)dx+(3x2y2−4xy3+3xy2)dy=0
∫(2xy3−y4+y3)dx=x2y3−xy4+xy3,taking y as a constant
∫(3x2y2−4xy3+3xy2)dy=x2y3−xy4+xy3,taking x as a constant
Adding the two, the solution of the equation is x2y3−xy4+xy3=C
Where C is an arbitrary constant
Comments
Leave a comment