Answer to Question #268598 in Differential Equations for Jes

Question #268598

y(2x-y+1)dx + x(3x-4y+3)dy=0

1
Expert's answer
2021-11-22T07:40:11-0500

y(2xy+1)dx+x(3x4y+3)dy=0y(2x-y+1)dx+x(3x-4y+3)dy=0

M(x,y)dx+N(x,y)dy=0M(x,y)dx+N(x,y)dy=0

M=y(2xy+1)=2xyy2+yM=y(2x-y+1)=2xy-y^2+y

N=x(3x4y+3)=3x24xy+3xN=x(3x-4y+3)=3x^2-4xy+3x

dMdy=2x2y+1\frac{dM}{dy}=2x-2y+1

dNdx=6x4y+3\frac{dN}{dx}=6x-4y+3

dMdydNdx\frac{dM}{dy}\not=\frac{dN}{dx} ,thus the equation is not exact

1M(dNdxdMdy)=6x4y+32x+2y1y(2xy+1)\frac{1}{M}(\frac{dN}{dx}-\frac{dM}{dy})=\frac{6x-4y+3-2x+2y-1}{y(2x-y+1)}

=4x2y+2y(2xy+1)=\frac{4x-2y+2}{y(2x-y+1)}

=2(2xy+1)y(2xy+1)=2y=\frac{2(2x-y+1)}{y(2x-y+1)}=\frac{2}{y} which is a function of y

I.F=e2ydy=e2lny=y2e^{\int\frac{2}{y}dy}=e^{2lny}=y^2

Multiplying both sides of the equation by y2 we get

y3(2xy+1)dx+xy2(3x4y+3)dy=0y^3(2x-y+1)dx+xy^2(3x-4y+3)dy=0

(2xy3y4+y3)dx+(3x2y24xy3+3xy2)dy=0(2xy^3-y^4+y^3)dx+(3x^2y^2-4xy^3+3xy^2)dy=0

(2xy3y4+y3)dx=x2y3xy4+xy3,taking y as a constant\int(2xy^3-y^4+y^3)dx=x^2y^3-xy^4+xy^3, taking\ y\ as\ a\ constant

(3x2y24xy3+3xy2)dy=x2y3xy4+xy3,taking x as a constant\int(3x^2y^2-4xy^3+3xy^2)dy=x^2y^3-xy^4+xy^3, taking\ x\ as\ a\ constant

Adding the two, the solution of the equation is x2y3xy4+xy3=Cx^2y^3-xy^4+xy^3=C

Where C is an arbitrary constant


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment