Answer to Question #272935 in Differential Equations for Thelma 22

Question #272935

For a given set of constants Ξ±, Ξ², and Ξ³ the functions


Ζ’ (x, y) =


7π‘₯


𝛼𝑦


2π‘₯𝛽


and Δ‘ (x, y) =


3π‘₯


π›½βˆ’π›Ύ


π‘₯π›½βˆ’π‘¦2


are homogeneous of degree 2 and 1 respectively. Determine the values for Ξ±, Ξ², and Ξ³.


1
Expert's answer
2021-11-29T17:11:25-0500

An equation of the form f(x,y)=0 is said to be the homogeneous equation of degree n, where n is a positive integer, and if for some real number k, we have f(kx,ky)=knf(x,y)


f(x,y)=7xΞ±y2xΞ²f(x,y)=\frac{7x^{\alpha}y}{2x^{\beta}}

f(kx,ky)=k2f(x,y)f(kx,ky)=k^2f(x,y)

7kΞ±xΞ±ky2kΞ²xΞ²=7k2xΞ±y2xΞ²\frac{7k^{\alpha}x^{\alpha}ky}{2k^{\beta}x^{\beta}}=\frac{7k^2x^{\alpha}y}{2x^{\beta}}


kΞ±βˆ’Ξ²+1=k2k^{\alpha-\beta+1}=k^2

Ξ±βˆ’Ξ²=1\alpha-\beta=1


gΛ™(x,y)=3xΞ²βˆ’Ξ³xΞ²βˆ’y2Δ‘ (x, y) =\frac{3x^{\beta-\gamma}}{x^{\beta}-y^2}


3kΞ²βˆ’Ξ³xΞ²βˆ’Ξ³kΞ²xΞ²βˆ’k2y2=3kxΞ²βˆ’Ξ³xΞ²βˆ’y2\frac{3k^{\beta-\gamma}x^{\beta-\gamma}}{k^{\beta}x^{\beta}-k^2y^2}=\frac{3kx^{\beta-\gamma}}{x^{\beta}-y^2}


kΞ²βˆ’Ξ³=k(kΞ²βˆ’k2)k^{\beta-\gamma}=k(k^{\beta}-k^2)

kΞ²βˆ’Ξ³βˆ’1=kΞ²βˆ’k2k^{\beta-\gamma-1}=k^{\beta}-k^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment