An equation of the form f(x,y)=0 is said to be the homogeneous equation of degree n, where n is a positive integer, and if for some real number k, we have f(kx,ky)=knf(x,y)
f(x,y)=2xΞ²7xΞ±yβ
f(kx,ky)=k2f(x,y)
2kΞ²xΞ²7kΞ±xΞ±kyβ=2xΞ²7k2xΞ±yβ
kΞ±βΞ²+1=k2
Ξ±βΞ²=1
gΛβ(x,y)=xΞ²βy23xΞ²βΞ³β
kΞ²xΞ²βk2y23kΞ²βΞ³xΞ²βΞ³β=xΞ²βy23kxΞ²βΞ³β
kΞ²βΞ³=k(kΞ²βk2)
kΞ²βΞ³β1=kΞ²βk2
Comments
Leave a comment