Consider the matrix
"A=\\begin{pmatrix}\n a_{11} &a_{12}&a_{13} \\\\\n a_{21} &a_{22}&a_{23} \\\\\na_{31} &a_{32}&a_{33} \\\\\n\\end{pmatrix}"
"X=\\begin{pmatrix}\n x_1 \\\\\n x_2\\\\\nx_3\n\\end{pmatrix}"
"b=\\begin{pmatrix}\n b_1 \\\\\n b_2\\\\\nb_3\n\\end{pmatrix}"
Subject to the problem the matrix equation
"Ax = b"
has infinitely many solutions then "det A=0, rank(A)<3".
The matrix equation "Ax = b" :
"\\left\\{\\begin{matrix}\n a_{11}x_1+ a_{12}x_2+a_{13}x_3=b_1\\\\\n a_{21}x_1+ a_{22}x_2+a_{23}x_3=b_2\\\\\na_{31}x_1+ a_{32}x_2+a_{33}x_3=b_3\\\\\n\\end{matrix}\\right."
Consider the matrix
"(A|b)=\\begin{pmatrix}\n a_{11} &a_{12}&a_{13} &|b_1\\\\\n a_{21} &a_{22}&a_{23} &|b_2\\\\\na_{31} &a_{32}&a_{33} &|b_3\\\\\n\\end{pmatrix}"
Suppose "a_{11}\\neq 0, rank(A)=2"
"(A|b) \\leftrightarrow\\begin{pmatrix}\n 1 &\\frac{a_{12}}{a_{11}}&\\frac{a_{13}}{a_{11}} &|\\frac{b_1}{a_{11}}\\\\\n a_{21} &a_{22}&a_{23} &|b_2\\\\\na_{31} &a_{32}&a_{33} &|b_3\\\\\n\\end{pmatrix} \\leftrightarrow\\\\\n\\begin{matrix}\n R_2+R_1(-a_{21}) \\\\\n R_3+R_1(-a_{31})\n\\end{matrix}\\\\\n\\leftrightarrow\n\\begin{pmatrix}\n 1 &*&* &|*\\\\\n 0 &c_{22}&c_{23} &|c_2\\\\\n0 &c_{32}&c_{33} &|c_3\\\\\n\\end{pmatrix}"
"c_{22}\\neq 0, rg(A)=2"
perform operations over rows
"\\frac{R_2}{c_{22}}\\\\\nR_3+R_2(-c_{32})"
"(A|b)\\leftrightarrow \\begin{pmatrix}\n 1 &*&* &|*\\\\\n 0 &1&* &|*\\\\\n0 &0&0 &|0\\\\\n\\end{pmatrix}"
Similarly, if "rank(A)=1, a_{11}\\neq 0", then
"(A|b)\\leftrightarrow \\begin{pmatrix}\n 1 &*&* &|*\\\\\n 0 &0&0 &|0\\\\\n0 &0&0 &|0\\\\\n\\end{pmatrix}"
Comments
Leave a comment