13. A and X are the matrices
a b
c d !
and
x y
u v !
respectively, where b is not equal
to zero. Prove that if AX = XA then u = cy/b and v = x + (d − a)y/b. Hence prove
that if AX = XA then there are numbers p and q such that X = pA + qI, and find
p and q in terms of a, b, x, y.
1
Expert's answer
2020-05-27T18:44:17-0400
"A=\\begin{pmatrix}\n a & b \\\\\n c & d\n\\end{pmatrix},X=\\begin{pmatrix}\n x & y\\\\\n u & v\n\\end{pmatrix}"
"AX=\\begin{pmatrix}\n a & b\\\\\n c & d\n\\end{pmatrix}\\begin{pmatrix}\n x & y\\\\\n u & v\n\\end{pmatrix}=\\begin{pmatrix}\n ax+bu & ay+bv\\\\\n cx+du & cy+dv\n\\end{pmatrix}"
"XA=\\begin{pmatrix}\n x & y\\\\\n u & v\n\\end{pmatrix}\\begin{pmatrix}\n a & b\\\\\n c & d\n\\end{pmatrix}=\\begin{pmatrix}\n ax+cy & bx+dy\\\\\n au+cv & bu+dv\n\\end{pmatrix}"
Comments
Leave a comment