Let the matrix be
"C = \\begin{pmatrix}\n a & b & c\\\\\n d & e & f\\\\\ng & h & i\n\\end{pmatrix}" , the determinant is "\\det(C) = a(ei-hf)+ b(fg-di)+c(dh-ge) ."
"\\det (C+C) = \\det(2C) = \\begin{vmatrix}\n 2a & 2b & 2c\\\\\n 2 d & 2e & 2f\\\\\n2g & 2h & 2i\n\\end{vmatrix} = 2a(2e\\cdot2i-2h\\cdot2f)+ 2b(2f\\cdot2g-2d\\cdot2i)+2c(2d\\cdot2h-2g\\cdot2e) = 2^3\\cdot\\big(a(ei-hf)+ b(fg-di)+c(dh-ge)\\big) = 8\\cdot\\det(C) = 32."
Comments
Leave a comment