Answer to Question #190367 in Linear Algebra for Regomoditswe Dibob

Question #190367

(6.1) Find det(C) if (1) C =  λ λ + 1 λ λ − 1  (6.2) Use the cofactor expansion to determine 2 0 0 0 3 1 2 0 2 −5 0 4 1 3 0 3 (6.3) Consider the matrix A =  1 4 2 3  (a) Compute A −1 (b) Find det(A **−1 ) (c) Deduce a relation (if it exists) between det(A) and det(A **−1 


1
Expert's answer
2021-05-11T08:32:03-0400

6.1. 


"C=\\begin{bmatrix}\n\n \\lambda& \\lambda+1\\\\\n\n \\lambda& \\lambda-1\n\n \\end{bmatrix}"


"Det(C)=\\begin{vmatrix}\n\n \\lambda& \\lambda+1\\\\\n\n \\lambda& \\lambda-1\n\n \\end{vmatrix}"


    "=\\lambda(\\lambda-1)-\\lambda(\\lambda+1)\n\n =-2\\lambda"

6.2

        

The given determinant is "\\begin{vmatrix}\n\n 2&0&0&0\\\\\n\n 3&1&2&0\\\\\n\n 2&-5&0&4\\\\\n\n 1&3&0&3\n\n \\end{vmatrix}"


Use the cofactor expansion corresponding to the first row.


"=2 \\begin{vmatrix}\n\n 1&2&0\\\\\n\n -5&0&4\\\\\n\n 3&0&3\n\n \n\n \\end{vmatrix} -0+0-0"


"=2 \\begin{vmatrix}\n\n 1&2&0\\\\\n\n -5&0&4\\\\\n\n 3&0&3\n\n \n\n \\end{vmatrix} \n\n\n\n =2[1(0-0)-2(-15-12)+0]\n\n =2[54]=108"


6.3

"(a) \\text{The given matrix is-\n}\nA=\\begin{bmatrix}\n\n 1&4\\\\\n\n2&3\\end{bmatrix}"


"det A=\\begin{vmatrix}\n\n 1&4\\\\\n\n2&3\\end{vmatrix}=3-8=-5"


"det A=-5 \\neq 0."


"\\Rightarrow A^{-1}" exist.


Now, "adj.(A)=\\begin{bmatrix}\n\n 3&-2\\\\\n\n2&3\\end{bmatrix}^T\n\n\n\n\\Rightarrow adj(A)=\\begin{bmatrix}\n\n 3&-4\\\\\n\n-2&1\\end{bmatrix}"



So, "A^{-1} =\\dfrac{adj A}{det (A)}=\\dfrac{1}{-5}\\begin{bmatrix}\n\n 3&-4\\\\\n\n-2&1\\end{bmatrix}=\\begin{bmatrix}\n\n \\dfrac{-3}{5} & \\dfrac{4}{5}\\\\\\\\\n\n\\dfrac{2}{5} & \\dfrac{-1}{5}\\end{bmatrix}"

(b) 


"det(A^{-1})=\\begin{vmatrix}\n\n \\dfrac{-3}{5} & \\dfrac{4}{5}\\\\\\\\\n\n\\dfrac{2}{5} & \\dfrac{-1}{5}\\end{vmatrix}"


    "=\\dfrac{3}{25}-\\dfrac{8}{25}=\\dfrac{3-8}{25}=\\dfrac{-5}{25}=\\dfrac{-1}{5}"



(c) We have, "det(A)=-5 \\text{ and }det(A^{-1})=\\dfrac{-1}{5}"


  "det(A).det(A^{-1})=(-5).(-\\dfrac{1}{5})=1"


  Hence "det(A).det(A^{-1})=1"


This is the required relation.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
14.05.21, 12:26

Dear prince, the answer to question 6.2 is correct.

prince
13.05.21, 17:32

question 6.2 the answer is -108 2(1)((54)(-1)) = 2(54(-1)) = -108

Leave a comment

LATEST TUTORIALS
New on Blog