Suppose U={(x, x, y, y) ∈ F4 :x, y ∈ F}. Find a subspace W of F4=U ∅ W
U={"(x,x,y,y)\\in F_4:x,y\\in F" }
=span {"(1,1,0,0),(0,0,1,1)" }
For "W=span" {"(1,0,0,0),(0,0,0,1)" }
={"(x,0,0,y)\\in F_4:x,y\\in F" }
Let "(a,b,c,d)\\in U\\cap W"
"\\Rightarrow (a,b,c,d)\\in U and (a,b,c,d)\\in W"
"(a,b,c,d)\\in U \\Rightarrow a=b \\text{ and } c=d~~~~~~~~-(1)\\\\\n\n\n\n(a,b,c,d)\\in W\\Rightarrow b=0 \\text{ and } c=0~~~~~~~~-(2)"
from (1) and (2) we have a=b=c=d=0
"U\\cap W={0}~~~~~~~-(3)"
Let "(a,b,c,d)\\in F_4"
"(a,b,c,d)=(b,b,c,c)+(a-b,0,0,d-c)"
Let "(a,b,c,d)\\in F_4"
"(a,b,c,d)=(b,b,c,c)+(a-b,0,0,d-c)"
"\\Rightarrow F_4=U+W~~~~~~~~~~-(4)"
From (3) and (4) we have-
"F_4=U \\bigoplus W"
Comments
Leave a comment