Answer to Question #204341 in Linear Algebra for Zahra

Question #204341

Example of Vector space and subspace in which it's all properties must satisfied.


1
Expert's answer
2021-06-08T11:57:52-0400

Consider the vector space "\\R^3" over field "\\R" with usual addition

"(x_1,y_1,z_1)+(x_2,y_2,z_2)=(x_1+x_2,y_1+y_2,z_1+z_2)"

and multiplication by a scalar "\\alpha\\in\\R:\\ \\alpha\\cdot(x,y,z)=(\\alpha x, \\alpha y, \\alpha z)."

Let us show that "W= \\{(x,-3x,2x)|x\\in\\mathbb R\\}" is a subspace of "\\mathbb R^3". Let "\\alpha, \\beta\\in\\mathbb R,\\ (x,-3x,2x), (y,-3y,2y)\\in W." Then "\\alpha (x,-3x,2x)+\\beta (y,-3y,2y)= (\\alpha x,-3\\alpha x,2\\alpha x)+(\\beta y,-3\\beta y,2\\beta y)=\n (\\alpha x+\\beta y,-3\\alpha x-3\\beta y,2\\alpha x+2\\beta y)= (\\alpha x+\\beta y,-3(\\alpha x+\\beta y),2(\\alpha x+\\beta y))\\in W."

Therefore, "W= \\{(x,-3x,2x)|x\\in\\mathbb R\\}" is a subspace of "\\mathbb R^3".


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
16.07.21, 00:17

Dear Haseeb, please use the panel for submitting a new question.


Haseeb
08.07.21, 12:22

Give an example which satisfies the properties of vector space, subspace and inner product space And number should be complex

Leave a comment

LATEST TUTORIALS
New on Blog