determine whether or not the set of vectors {(1,2,-1),(0,3,1),(1,-5,3)} is a basis of R^3 also find dimension
We can set up a matrix and use Gaussian elimination .
"R_3=R_3-R_1"
"\\begin{pmatrix}\n 1 & 2 & -1 \\\\\n 0 & 3 & 1 \\\\\n 0 & -7 & 4 \\\\\n\\end{pmatrix}""R_2=R_2\/3"
"\\begin{pmatrix}\n 1 & 2 & -1 \\\\\n 0 & 1 & 1\/3 \\\\\n 0 & -7 & 4 \\\\\n\\end{pmatrix}""R_1=R_1-2R_2"
"\\begin{pmatrix}\n 1 & 0 & -5\/3 \\\\\n 0 & 1 & 1\/3 \\\\\n 0 & -7 & 4 \\\\\n\\end{pmatrix}""R_3=R_3+7R_2"
"R_3=(3\/19)R_3"
"R_1=R_1+(5\/3)R_3"
"R_2=R_2-R_3\/3"
Since the rank of the matrix is 3, then the set {(1,2,-1),(0,3,1),(1,-5,3)} is a basis of "R^3."
The dimension is 3.
Comments
Leave a comment