Let "x=" the number of years since 1993, "y=" sales (in lakhs of rupees)
"\\bar{x}={1\\over n}\\displaystyle\\sum_{i=1}^nx_i=2.5, \\bar{y}={1\\over n}\\displaystyle\\sum_{i=1}^ny_i=52.5"
"S_{xx}=\\displaystyle\\sum_{i=1}^nx_i^2 -{1\\over n}(\\displaystyle\\sum_{i=1}^nx_i)^2=17.5"
"S_{yy}=\\displaystyle\\sum_{i=1}^ny_i^2 -{1\\over n}(\\displaystyle\\sum_{i=1}^ny_i)^2=437.5"
"S_{xy}=\\displaystyle\\sum_{i=1}^nx_iy_i -{1\\over n}(\\displaystyle\\sum_{i=1}^nx_i)(\\displaystyle\\sum_{i=1}^ny_i)=87.5"
"m={S_{xy}\\over S_{xx}}={87.5\\over 17.5}=5"
"n=\\bar{y}-m\\cdot\\bar{x}=52.5-5\\times2.5=40"
Therefore, we find that the regression equation is:
Find out the company’s sales in 1999
The company’s sales in 1999 will be 70 lakhs of rupees.
Comments
Leave a comment