a. Let "X=" the number of substandard pieces among 6 taken pieces.
"\\dbinom{18}{6}=\\dfrac{18!}{6!(18-6)!}=18564"
"P(X=0)=\\dfrac{\\dbinom{4}{0}\\dbinom{14}{6}}{18564}=\\dfrac{3003}{18564}=\\dfrac{11}{68}"
"P(X=1)=\\dfrac{\\dbinom{4}{1}\\dbinom{14}{5}}{18564}=\\dfrac{8008}{18564}=\\dfrac{22}{51}"
"P(X=2)=\\dfrac{\\dbinom{4}{2}\\dbinom{14}{4}}{18564}=\\dfrac{6006}{18564}=\\dfrac{11}{34}"
"P(X=3)=\\dfrac{\\dbinom{4}{3}\\dbinom{14}{3}}{18564}=\\dfrac{1456}{18564}=\\dfrac{4}{51}"
"P(X=4)=\\dfrac{\\dbinom{4}{4}\\dbinom{14}{2}}{18564}=\\dfrac{91}{18564}=\\dfrac{1}{204}"
b,
"+4\\cdot\\dfrac{1}{204}=\\dfrac{4}{3}"
"Var(X)=E(X^2)-(E(X))^2="
"=\\dfrac{128}{51}-(\\dfrac{4}{3})^2=\\dfrac{112}{153}"
c,
"\\dfrac{11}{68} + \\dfrac{22}{51} + \\dfrac{11}{34} = \\dfrac{11}{12}"
"P(X<3)=\\dfrac{11}{12}"
d.
Comments
Leave a comment