Values of f(x) for values of x are given as
f(1) = 4, f(2) = 5, f(7) = 5, f(8) = 4
Find f(6) and also the value of x for which f(x) is maximum or minimum.
Here the intervals are unequal.
By Lagrange’s interpolation formula we have
"y=f(x)=\\dfrac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}\\times y_0""+\\dfrac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}\\times y_1"
"+\\dfrac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}\\times y_2"
"+\\dfrac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}\\times y_3"
Put "x=6"
"f(6)=\\dfrac{(6-2)(6-7)(6-8)}{(1-2)(1-7)(1-8)}\\times 4""+\\dfrac{(6-1)(6-7)(6-8)}{(2-1)(2-7)(2-8)}\\times 5"
"+\\dfrac{(6-1)(6-2)(6-8)}{(7-1)(7-2)(7-8)}\\times5"
"+\\dfrac{(6-1)(6-2)(6-7)}{(8-1)(8-2)(8-7)}\\times 4"
"=\\dfrac{17}{3}"
"f(6)=\\dfrac{17}{3}"
Let "f(x)=ax^2+bc+c"
"\\begin{alignedat}{2}\n a+b+c= 4 \\\\\n 3a+b=1 \\\\\n 15a+b=-1 \\\\\n64a+8b+c=4\n\\end{alignedat}"
"a=-\\dfrac{1}{6}, b=\\dfrac{3}{2}, c=\\dfrac{8}{3}"
"x_v=-\\dfrac{\\dfrac{3}{2}}{2(-\\dfrac{1}{6})}=\\dfrac{9}{2}"
"y_v=f(\\dfrac{9}{2})=-\\dfrac{1}{6}(\\dfrac{9}{2})^2+\\dfrac{3}{2}(\\dfrac{9}{2})+\\dfrac{8}{3}=\\dfrac{145}{24}"
f(x) is maximum at "x=\\dfrac{9}{2}"
Comments
Leave a comment