Answer to Question #153447 in Math for usman

Question #153447

Values of f(x) for values of x are given as

f(1) = 4, f(2) = 5, f(7) = 5, f(8) = 4

Find f(6) and also the value of x for which f(x) is maximum or minimum.


1
Expert's answer
2021-01-03T15:59:14-0500

Here the intervals are unequal.


"\\begin{matrix}\n x_0=1, & x_1=2, & x_2=7, & x_3=8 \\\\\n y_0=4, & y_1=5, & y_2=5, & y_3=4\n\\end{matrix}"


By Lagrange’s interpolation formula we have

"y=f(x)=\\dfrac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}\\times y_0"

"+\\dfrac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}\\times y_1"

"+\\dfrac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}\\times y_2"

"+\\dfrac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}\\times y_3"



Put "x=6"

"f(6)=\\dfrac{(6-2)(6-7)(6-8)}{(1-2)(1-7)(1-8)}\\times 4"

"+\\dfrac{(6-1)(6-7)(6-8)}{(2-1)(2-7)(2-8)}\\times 5"

"+\\dfrac{(6-1)(6-2)(6-8)}{(7-1)(7-2)(7-8)}\\times5"

"+\\dfrac{(6-1)(6-2)(6-7)}{(8-1)(8-2)(8-7)}\\times 4"

"=\\dfrac{17}{3}"

"f(6)=\\dfrac{17}{3}"

Let "f(x)=ax^2+bc+c"


"\\begin{alignedat}{2}\n a+b+c= 4 \\\\\n 4a+2b+c=5 \\\\\n 49a+7b+c=5 \\\\\n64a+8b+c=4\n\\end{alignedat}"

"\\begin{alignedat}{2}\n a+b+c= 4 \\\\\n 3a+b=1 \\\\\n 15a+b=-1 \\\\\n64a+8b+c=4\n\\end{alignedat}"

"a=-\\dfrac{1}{6}, b=\\dfrac{3}{2}, c=\\dfrac{8}{3}"


"f(x)=-\\dfrac{1}{6}x^2+\\dfrac{3}{2}x+\\dfrac{8}{3}"

"x_v=-\\dfrac{\\dfrac{3}{2}}{2(-\\dfrac{1}{6})}=\\dfrac{9}{2}"

"y_v=f(\\dfrac{9}{2})=-\\dfrac{1}{6}(\\dfrac{9}{2})^2+\\dfrac{3}{2}(\\dfrac{9}{2})+\\dfrac{8}{3}=\\dfrac{145}{24}"


f(x) is maximum at "x=\\dfrac{9}{2}"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog