a) given the parabola (y+2)²=-8(x + 1), sketch the graph and determine the vertex , focus and directrix line of the parabola .
b)sketch the graph of f(x)=-(|x - 1| - 3) by using transformation technique . begin with f(x).
c)graph the system inequality below and shade the feasible region .
: 3y < 15 - 2x
: y(less and equal than) x + 2
: y < 2
: y is (greater and equal than) 0
a) "(y+2)^2=-8(x+1)"
"h=-1, k=-2, p=-2"
"Vertex: (h, k)=(-1, -2)"
"Focus: (h+p, k)=(-3, -2)"
"Directrix: x=h-p, x=1"
b)
1. Begin by graphing "f_1(x)=|x|" - black graph.
2. Shift left by 1: "f_2(x)=|x-1|" - blue graph.
3. Shift down by 3: "f_3(x)=|x-1|-3" - green graph.
4. Flip over the "x" -axis: "f(x)=-(|x-1|-3)" - red graph.
c)
"y\\geq0"
c)graph the system inequality below and shade the feasible region .
: 3y < 15 - 2x
: y(less and equal than) x + 2
: y < 2
: y is (greater and equal than) 0
"y=0: 0=15-2x=>x=\\dfrac{15}{2}"
"Point (\\dfrac{15}{2}, 0)"
"y=2: 3(2)=15-2x=>x=\\dfrac{9}{2}"
"Point (\\dfrac{9}{2}, 2)"
"y=0: 0=x+2=>x=-2"
"Point(-2,0)"
"y=2: 2=x+2=>x=0"
"Point(0,2)"
Comments
Leave a comment