Answer to Question #177126 in Math for Mary

Question #177126

 Given the quantic equation below, solve it to find the values of x. (3pts) 

 

 2𝑥5 − 6𝑥3 − 4𝑥2 - 2𝑥 + 4 = 0 


1
Expert's answer
2021-04-15T07:20:08-0400

Divide both sides of the equation by the common factor 2:


"x^5-3x^3-2x^2-x+2=0"


Use Rational Root Test to find rational roots. The factors of the constant term (2) are 1, 2, -1,-2. Check whether these numbers are roots of the equation:


"1^5-3\\cdot1^3-2\\cdot 1^2-1+2=1-3-2-1+2=-3\\mathrlap{\\,\/}{=}0"

x=1 is not a solution.

"2^5-3\\cdot2^3-2\\cdot 2^2-2+2=32-24-8-2+2=0"


x=2 is a solution and x-2 is a factor of the equation. Factorize it:


"x^5-3x^3-2x^2-x+2=""=x^5-2x^4+2x^4-4x^3+x^3-2x^2-x+2=""=x^4(x-2)+2x^3(x-2)+x^2(x-2)-1(x-2)=""=(x-2)(x^4+2x^3+x^2-1)=""=(x-2)((x^2+x)^2-1)=""=(x-2)(x^2+x-1)(x^2+x+1)"

Now the equation has the form:


"(x-2)(x^2+x-1)(x^2+x+1)=0"

1) Solve the equation "x^2+x-1=0"


"x_1=\\frac{-1-\\sqrt{1-4\\cdot1\\cdot(-1)}}{2}=\\frac{-1-\\sqrt{5}}{2}""x_2=\\frac{-1+\\sqrt{1-4\\cdot1\\cdot(-1)}}{2}=\\frac{-1+\\sqrt{5}}{2}"

2) Solve the equation "x^2+x+1=0"

The Discriminant is negative: "D=1-4\\cdot1\\cdot1=1-4=-3", so the equation has no real solutions, but has complex solutions:


"x_1=\\frac{-1-\\sqrt{1-4\\cdot1\\cdot1}}{2}=\\frac{-1-\\sqrt{-3}}{2}=\\frac{-1-i\\sqrt{3}}{2}""x_2=\\frac{-1+\\sqrt{1-4\\cdot1\\cdot1}}{2}=\\frac{-1+\\sqrt{-3}}{2}=\\frac{-1+i\\sqrt{3}}{2}"

Answer: The equation has 3 real solutions: 2, "\\frac{-1-\\sqrt{5}}{2}", "\\frac{-1+\\sqrt{5}}{2}" and 2 complex solutions "\\frac{-1-i\\sqrt{3}}{2}", "\\frac{-1+i\\sqrt{3}}{2}"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog