Answer to Question #179513 in Math for EUGINE HAWEZA

Question #179513

i. find limπ‘₯β†’2 π‘₯^ 2βˆ’3π‘₯ +2 / π‘₯ ^2βˆ’4


ii. Where are is the function 𝑓(π‘₯) = 1 2π‘₯ ^2βˆ’6π‘₯+4 continuous?


iii. Given that given π‘Œ = tanβˆ’1 π‘₯ show that 𝑑𝑦 /𝑑π‘₯ = 1 1+π‘₯ ^2Β 



iv. Prove using the first principle that the derivative of sin π‘₯ is cos π‘₯ and that the derivative of π‘π‘œπ‘ π‘₯ is – 𝑠𝑖𝑛x


v. Differentiate sin 𝑦 βˆ’ π‘₯ 2𝑦 3 βˆ’ π‘π‘œπ‘ π‘₯ = 3y


vi. limπ‘₯β†’1 π‘₯^2+π‘₯ 3βˆ’5π‘₯+3/ π‘₯^3+2π‘₯^2+7π‘₯+4



vii. limπ‘₯β†’βˆž 2π‘₯/ 3π‘₯^6+π‘₯+4


1
Expert's answer
2021-04-15T06:31:35-0400

i.

"\\lim\\limits_{x\\to 2}\\dfrac{x^2-3x+2}{x^2-4}=\\lim\\limits_{x\\to 2}\\dfrac{(x-1)(x-2)}{(x-2)(x+2)}"

"=\\lim\\limits_{x\\to 2}\\dfrac{x-1}{x+2}=\\dfrac{2-1}{2+2}=\\dfrac{1}{4}"

ii. The function "f(x)=12x^2-6x+4" is continuous for all "x\\in \\R" as polynomial.


iii. Let "y=\\tan^{-1}(x)." Then "\\tan y=x, -\\dfrac{\\pi}{2}<y<\\dfrac{\\pi}{2}"



"(\\tan^{-1}(x))'=\\dfrac{1}{(\\tan y)'}=\\dfrac{1}{\\dfrac{1}{\\cos^2y}}"

"=\\dfrac{1}{1+\\tan^2y}=\\dfrac{1}{1+x^2}"

iv.


"(\\sin x)'=\\lim\\limits_{h\\to 0}\\dfrac{\\sin(x+h)-\\sin x}{h}"

"=\\lim\\limits_{h\\to 0}\\dfrac{\\sin x\\cos h+\\cos x \\sin h-\\sin x}{h}"

"=\\lim\\limits_{h\\to 0}\\dfrac{\\sin x(\\cos h-1)+\\cos x \\sin h}{h}"

"=\\sin x\\lim\\limits_{h\\to 0}\\dfrac{\\cos h-1}{h}+\\cos x\\lim\\limits_{h\\to 0}\\dfrac{\\sin h}{h}"

"=\\sin x(0)+\\cos x(1)=\\cos x"



"(\\cos x)'=\\lim\\limits_{h\\to 0}\\dfrac{\\cos(x+h)-\\cos x}{h}"

"=\\lim\\limits_{h\\to 0}\\dfrac{\\cos x\\cos h-\\sin x \\sin h-\\cos x}{h}"

"=\\lim\\limits_{h\\to 0}\\dfrac{\\cos x(\\cos h-1)-\\sin x \\sin h}{h}"

"=\\cos x\\lim\\limits_{h\\to 0}\\dfrac{\\cos h-1}{h}-\\sin x\\lim\\limits_{h\\to 0}\\dfrac{\\sin h}{h}"

"=\\cos x(0)-\\sin x(1)=-\\sin x"

v.


"\\dfrac{d}{dx}(\\sin y-x^2y^3-\\cos x)=\\dfrac{d}{dx}(3y)"

Use the Chain Rule


"\\cos y \\dfrac{dy}{dx}-2xy^3-3x^2 y^2 \\dfrac{dy}{dx}+\\sin x=3\\dfrac{dy}{dx}"

Solve for "\\dfrac{dy}{dx}"


"\\dfrac{dy}{dx}=\\dfrac{-2xy^3+\\sin x}{3+3x^2y^2-\\cos y}"


vi.

"\\lim\\limits_{x\\to 1}\\dfrac{x^2+x^3-5x+3}{x^3+2x^2+7x+4}=\\dfrac{1^2+1^3-5(1)+3}{1^3+2(1)^2+7(1)+4}"

"=0"

vii.


"\\lim\\limits_{x\\to \\infin}\\dfrac{2x}{3x^6+x+4}=\\lim\\limits_{x\\to \\infin}\\dfrac{\\dfrac{2x}{x^6}}{\\dfrac{3x^6}{x^6}+\\dfrac{x}{x^6}+\\dfrac{4}{x^6}}"

"=\\lim\\limits_{x\\to \\infin}\\dfrac{\\dfrac{2}{x^5}}{3+\\dfrac{1}{x^5}+\\dfrac{4}{x^6}}=\\dfrac{0}{3+0+0}=0"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog