i. find limπ₯β2 π₯^ 2β3π₯ +2 / π₯ ^2β4
ii. Where are is the function π(π₯) = 1 2π₯ ^2β6π₯+4 continuous?
iii. Given that given π = tanβ1 π₯ show that ππ¦ /ππ₯ = 1 1+π₯ ^2Β
iv. Prove using the first principle that the derivative of sin π₯ is cos π₯ and that the derivative of πππ π₯ is β π ππx
v. Differentiate sin π¦ β π₯ 2π¦ 3 β πππ π₯ = 3y
vi. limπ₯β1 π₯^2+π₯ 3β5π₯+3/ π₯^3+2π₯^2+7π₯+4
vii. limπ₯ββ 2π₯/ 3π₯^6+π₯+4
i.
"\\lim\\limits_{x\\to 2}\\dfrac{x^2-3x+2}{x^2-4}=\\lim\\limits_{x\\to 2}\\dfrac{(x-1)(x-2)}{(x-2)(x+2)}""=\\lim\\limits_{x\\to 2}\\dfrac{x-1}{x+2}=\\dfrac{2-1}{2+2}=\\dfrac{1}{4}"
ii. The function "f(x)=12x^2-6x+4" is continuous for all "x\\in \\R" as polynomial.
iii. Let "y=\\tan^{-1}(x)." Then "\\tan y=x, -\\dfrac{\\pi}{2}<y<\\dfrac{\\pi}{2}"
"=\\dfrac{1}{1+\\tan^2y}=\\dfrac{1}{1+x^2}"
iv.
"=\\lim\\limits_{h\\to 0}\\dfrac{\\sin x\\cos h+\\cos x \\sin h-\\sin x}{h}"
"=\\lim\\limits_{h\\to 0}\\dfrac{\\sin x(\\cos h-1)+\\cos x \\sin h}{h}"
"=\\sin x\\lim\\limits_{h\\to 0}\\dfrac{\\cos h-1}{h}+\\cos x\\lim\\limits_{h\\to 0}\\dfrac{\\sin h}{h}"
"=\\sin x(0)+\\cos x(1)=\\cos x"
"=\\lim\\limits_{h\\to 0}\\dfrac{\\cos x\\cos h-\\sin x \\sin h-\\cos x}{h}"
"=\\lim\\limits_{h\\to 0}\\dfrac{\\cos x(\\cos h-1)-\\sin x \\sin h}{h}"
"=\\cos x\\lim\\limits_{h\\to 0}\\dfrac{\\cos h-1}{h}-\\sin x\\lim\\limits_{h\\to 0}\\dfrac{\\sin h}{h}"
"=\\cos x(0)-\\sin x(1)=-\\sin x"
v.
Use the Chain Rule
Solve for "\\dfrac{dy}{dx}"
vi.
"\\lim\\limits_{x\\to 1}\\dfrac{x^2+x^3-5x+3}{x^3+2x^2+7x+4}=\\dfrac{1^2+1^3-5(1)+3}{1^3+2(1)^2+7(1)+4}""=0"
vii.
"=\\lim\\limits_{x\\to \\infin}\\dfrac{\\dfrac{2}{x^5}}{3+\\dfrac{1}{x^5}+\\dfrac{4}{x^6}}=\\dfrac{0}{3+0+0}=0"
Comments
Leave a comment