rOA and rOB are the position vectors of the two particles Aand B at time t.If both particles start moving when t=0,determine whethert the particles collide and,if they do,give the value of t when this occurs and the position vector of the point of collision.If they do not ,find the time and their distance apart when they are closest together .
(a) rOA =3i-7j+(3i+2j)t, rOB=8i-6j+(2i+j)t.
(b) rOA=-5i+2j+9k+(5i-j+2k)t, rOB=i+2j+3k+(3i-j+4k)t.
(a)
"\\vec r_A=\\vec r_B""3\\vec i-7\\vec j+(3\\vec i+2\\vec j)t=8\\vec i-6\\vec j+(2\\vec i+\\vec j)t"
"\\begin{matrix}\n 3+3t=8+2t \\\\\n -7+2t=-6+t \\\\\n\n\\end{matrix}"
"\\begin{matrix}\n t=5 \\\\\n t=1 \\\\\n\n\\end{matrix}"
No solution. The particles will never collide.
"=(8+2t-3-3t)^2+(-6+t+7-2t)^2"
"=(5-t)^2+(1-t)^2=2t^2-12t+26"
"t_{vertex}=\\dfrac{12}{2(2)}=3"
"d_{min}=\\sqrt{2(3)^2-12(3)+26}=2\\sqrt{2}"
"\\vec r_A(3)=12\\vec i-\\vec j"
"\\vec r_B(3)=14\\vec i-3\\vec j"
(b)
"\\vec r_A=\\vec r_B""-5\\vec i+2\\vec j+9\\vec k+(5\\vec i-\\vec j+2\\vec k)t"
"=\\vec i+2\\vec j+3\\vec k+(3\\vec i-\\vec j+4\\vec k)t"
"\\begin{matrix}\n -5+5t=1+3t \\\\\n 2-t=2-t \\\\\n9+2t=3+4t \\\\\n\\end{matrix}"
The solution "t=3"
The particles will collide at time "t=3" after the start, and
Comments
Leave a comment