Answer to Question #200424 in Math for Raghav

Question #200424

Consider the blood flow in an artery following Poiseuille’s law. If the length of the

artery is 3 cm, radius is 7×10-3 cm and driving force is 5×103 dynes/cm2 then using blood viscosity, μ = 0 × 027 poise, find the

(i) velocity u( y) and the maximum peak velocity of blood, and

(ii) shear stress at the wall of the artery.


1
Expert's answer
2021-06-01T09:07:43-0400

(i) Here, viscosity of blood is given as

 "\\mu=0.027\\ poise=0.0027\\dfrac{N\\cdot s}{m^2}" ,

length of artery "l=3cm=3\\times10^{-2}m,"

radius "r=7\\times10^{-3} cm=7\\times10^{-5}m," and "P_1-P_2= 5\\times10^{3} \\dfrac{dyne}{cm^2}=5\\times 10^2\\dfrac{N}{m^2}"

We know that maximum velocity in case of fluid flow



"V_{max}=\\frac{\\Delta P r^2}{4 \\mu l}= \\frac{5\\times10^{2}\\times49\\times10^{-10}}{4\\times0.0027\\times3\\times10^{-2}}=0.756\\ cm\/s""u=\\dfrac{V_{max}}{2}=\\dfrac{0.756cm\/s}{2}=0.378cm\/s"



(ii) For shear stress we know that,



"\\tau=\\frac{\\Delta P r}{2l}= \\frac{5\\times10^{2}\\times7\\times10^{-5}}{2\\times3\\times10^{-2}m}=0.583\\dfrac{N}{m^2}=5.83 \\dfrac{dyne}{cm^2}"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog