Answer to Question #244535 in Math for Sweet
Let
A=2x^2i−3yzj+xz^2k
and
ϕ=2z−x^3y
, find
A×▽ϕ
at point (1,-1,1).
1
2021-09-30T14:20:08-0400
"\\nabla \\phi=-3x^2yi-x^3j+2k"
"A\\times \\nabla \\phi=\\begin{vmatrix}\n i & j & k \\\\\n 2x^2 & -3yz & xz^2 \\\\\n-3x^2y & -x^3 & 2\n\\end{vmatrix}"
"=i\\begin{vmatrix}\n -3yz & xz^2 \\\\\n -x^3 & 2\n\\end{vmatrix}-j\\begin{vmatrix}\n 2x^2 & xz^2 \\\\\n -3x^2y & 2\n\\end{vmatrix}+k\\begin{vmatrix}\n 2x^2 & -3yz \\\\\n -3x^2y & -x^3\n\\end{vmatrix}"
"=(-6yz+x^4z^2)i+(-4x^2-3x^3yz^2)j"
"+(-2x^5-9x^2y^2z)k" "(1,-1,1)"
"A\\times \\nabla \\phi|_{(1, -1, 1)}=(6+1)i+(-4+3)j+(-2-9)k"
"=7i-j-11k"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Learn more about our help with Assignments:
Math
Comments
Leave a comment