Answer to Question #345265 in Math for Geoffroy yawogan

Question #345265

1.Find the domain of the function 𝑓(π‘₯)=log4(π‘₯2+4π‘₯βˆ’5𝑒π‘₯βˆ’1).

Β 

2. Construct the tangent line to the graph of the function 𝑓(π‘₯)=√π‘₯+2π‘₯ which is perpendicular to the line π‘₯+3π‘¦βˆ’2=0.

Β 

3. Find the maximal intervals of monotonicity of the function 𝑓(π‘₯)=arctg(π‘₯2βˆ’4π‘₯).

Β 

4. Calculate the integral ∫π‘₯2(π‘₯3+4)2 𝑑π‘₯2βˆ’1.

Β 

5. Find the particular solution of the differential equation 𝑦′=βˆ’(2𝑦+1)β‹…tg(π‘₯) which fulfills the initial condition 𝑦(πœ‹4)=12.

Β 

6. Solve the matrix equation 2𝒳+π’œ=3β„¬βˆ’π’œπ’³ if π’œ=(βˆ’4βˆ’332), ℬ=(1βˆ’121).

Β 


1
Expert's answer
2022-05-27T12:52:58-0400

1.


"x^2+4\ud835\udc65\u22125e^x\u22121>0"

"x<-4.252"

Domain: "(-\\infin, -4.252)"


2.


"x+3y-2=0"

"y=-\\dfrac{1}{3}x+\\dfrac{2}{3}"

The slope of the tangent line

"slope=m=-\\dfrac{1}{-\\dfrac{1}{3}}=3"

"\ud835\udc53(\ud835\udc65)=\\sqrt{x}+2\ud835\udc65"

"f'(x)=\\dfrac{1}{2\\sqrt{x}}+2"

"slope=m=3=\\dfrac{1}{2\\sqrt{x}}+2"

"\\dfrac{1}{2\\sqrt{x}}=1"

"x=\\dfrac{1}{4}"

"y(\\dfrac{1}{4})=\\sqrt{\\dfrac{1}{4}}+2(\\dfrac{1}{4})=1"

The equation of the tangent line in point-slope form is


"y-1=3(x-\\dfrac{1}{4})"

The equation of the tangent line in slope-intercept form is


"y=3x+\\dfrac{1}{4}"



3.

Domain:"(-\\infin, \\infin)"


"f'(x)=(\\arctan(x^2-4x))'=\\dfrac{2x-4}{1+(x^2-4x)^2}"

"f'(x)=0=>\\dfrac{2x-4}{1+(x^2-4x)^2}=0"

"x=2"

If "x<2, f'(x)<0, f(x)" decreases.

If "x>2, f'(x)>0, f(x)" increases.

The function "f" is monotone decreasing on "(-\\infin, 2)."

The function "f" is monotone increasing on "(2,\\infin)."


4.


"\\int x^2(x^3+4)^2 dx"

"u=x^3+4, du=3x^2dx"

"\\int x^2(x^3+4)^2 dx=\\dfrac{1}{3}\\int u^2du=\\dfrac{u^3}{9}+C"

"=\\dfrac{(x^3+4)^3}{9}+C"

5.


"\\dfrac{dy}{2y+1}=-\\tan (x)dx"

Integrate


"\\int \\dfrac{dy}{2y+1}=-\\int\\tan (x)dx"

"\\int\\tan (x)dx=\\int\\dfrac{\\sin (x)}{\\cos(x)}dx=-\\ln|\\cos(x)|+\\dfrac{1}{2}\\ln C"

"\\dfrac{1}{2}\\ln|2y+1|=\\ln|\\cos(x)|+\\dfrac{1}{2}\\ln C"

"2y+1=C\\cos ^2 (x)"

Given "y(\\dfrac{\\pi}{4})=12"


"2(12)+1=C\\cos ^2 (\\dfrac{\\pi}{4})"

"C=50"

The particular solution of the differential equation

"2y+1=50\\cos ^2 (x)"

6.


"2X+A=3B-AX"


"A=\\begin{pmatrix}\n -4 & -3 \\\\\n 3 & 2\n\\end{pmatrix}, B=\\begin{pmatrix}\n 1 & -1 \\\\\n 2 & 1\n\\end{pmatrix}"

Let


"X=\\begin{pmatrix}\n x_{11}& x_{12} \\\\\n x_{21} & x_{22}\n\\end{pmatrix}"

Then


"2X=\\begin{pmatrix}\n 2x_{11}& 2x_{12} \\\\\n 2x_{21} & 2x_{22}\n\\end{pmatrix}"

"AX=\\begin{pmatrix}\n -4 & -3 \\\\\n 3 & 2\n\\end{pmatrix}\\begin{pmatrix}\n x_{11}& x_{12} \\\\\n x_{21} & x_{22}\n\\end{pmatrix}"

"=\\begin{pmatrix}\n -4x_{11}-3x_{21}& -4x_{12}-3x_{22} \\\\\n 3x_{11}+2x_{21} & 3x_{12}+2x_{22}\n\\end{pmatrix}"


"2X+AX=\\begin{pmatrix}\n -2x_{11}-3x_{21}& -2x_{12}-3x_{22} \\\\\n 3x_{11}+4x_{21} & 3x_{12}+4x_{22}\n\\end{pmatrix}"

"3B-A=\\begin{pmatrix}\n 7 & 0 \\\\\n 3 & 1\n\\end{pmatrix}"

"\\begin{pmatrix}\n -2x_{11}-3x_{21}& -2x_{12}-3x_{22} \\\\\n 3x_{11}+4x_{21} & 3x_{12}+4x_{22}\n\\end{pmatrix}=\\begin{pmatrix}\n 7 & 0 \\\\\n 3 & 1\n\\end{pmatrix}"


"-2x_{11}-3x_{21}=7""3x_{11}+4x_{21}=3"

"-2x_{12}-3x_{22}=0""3x_{12}+4x_{22}=1"

"x_{21}=27""-2x_{11}-3x_{21}=7"


"-x_{22}=2""3x_{12}+4x_{22}=1"

"x_{11}=37, x_{21}=-27, x_{22}=-2, x_{12}=3"


"X=\\begin{pmatrix}\n 37& -27 \\\\\n 3 & -2\n\\end{pmatrix}"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog