1.i)
"x+2+3+6+7+7+5+5+8+9=6(10)"
"x+52=60"
"x=8" ii)
"(2-6)^2+(3-6)^2+2(5-6)^2+(6-6)^2+2(7-6)^2+2(8-6)^2+(9-6)^2=46" The standard deviation for these set of marks:
"s=\\sqrt{\\frac{46}{9-1}}=2.4" 2. The coefficient matrix is
"\\begin{bmatrix}\n 3 & 5 \\\\\n 2 & -7\n\\end{bmatrix}" And
"\\begin{vmatrix}\n 3 & 5 \\\\\n 2 & -7\n\\end{vmatrix}=3(-7)-2(5)=-31" So,
"x=\\frac{\\begin{vmatrix}\n 2 & 5 \\\\\n -1 & -7\n\\end{vmatrix}}{-31}=\\frac{(2)(-7)-(-1)(5)}{-31}=\\frac{9}{31}"
"y=\\frac{\\begin{vmatrix}\n 3 & 2 \\\\\n 2 & -1\n\\end{vmatrix}}{-31}=\\frac{(3)(-1)-(2)(2)}{-31}=\\frac{7}{31}"
Comments
Leave a comment