Answer to Question #139399 in Quantitative Methods for elle
find the roots using newton rhapson. Stop until at 15th iteration or when approximate percent relative error is below 0.05%.
2x^5+x^4-2x-1=0
1
2020-10-22T17:50:28-0400
"2x^5+x^4-2x-1=0""x^4(2x+1)-(2x+1)=0""(2x+1)(x^4-1)=0""(2x+1)(x^2+1)(x^2-1)=0""(2x+1)(x^2+1)(x+1)(x-1)=0"
"x1=-1, x2={1\\over 2}, x3=1"
"f(x)=2x^5+x^4-2x-1"
"f'(x)=10x^4+4x^3-2"
"x_{n+1}=x_n-\\dfrac{f(x_n)}{f'(x_n)}" Initial solution "x_0=0"
"f(0)=-1, f'(0)=-2, x_1=0-{-1 \\over -2}=-0.5""\\begin{matrix}\n n & x_n & f(x_n) & f'(x_n) & x_{n+1} & f(x_{n+1}) \\\\\n 1 & -0.5 & 0 & -1.875\n\\end{matrix}" "x=-0.5"
Initial solution "x_0=2"
"f(2)=75, f'(0)=190, x_1=2-{75 \\over190}=1.60526""\\begin{matrix}\n n & x_n & f(x_n) & x_{n+1} & f(x_{n+1}) \\\\\n 1 & 1.60526 & 23.74820 & 1.31189 & 7.10986 \\\\\n 2 & 1.31189 & 7.10986 & 1.11790 & 1.81772 \\\\\n 3 & 1.11790 & 1.81772 & 1.02326 & 0.29343 \\\\\n 4 & 1.02326 & 0.29343 & 1.00111 & 0.01332 \\\\\n 5 & 1.00111 & 0.01332 & 1.00000 & 0.00003\\\\\n 6 & 1.00000 & 0 & 1.00000 \n\\end{matrix}"
"\\varepsilon =\\big|\\dfrac{n_{i+1}-n_i}{n_i}\\big|\\cdot 100\\%"
"\\varepsilon =\\big|\\dfrac{1.31189-1.60526}{1.60526}\\big|\\cdot 100\\%=18.26\\%"
"\\varepsilon =\\big|\\dfrac{1.11790-1.31189}{1.31189}\\big|\\cdot 100\\%=14.79\\%"
"\\varepsilon =\\big|\\dfrac{1.02326-1.11790}{1.11790}\\big|\\cdot 100\\%=8.47\\%"
"\\varepsilon =\\big|\\dfrac{1.00111-1.02326}{1.02326}\\big|\\cdot 100\\%=2.16\\%"
"\\varepsilon =\\big|\\dfrac{1.00000-1.00111}{1.00111}\\big|\\cdot 100\\%=0.11\\%"
"\\varepsilon =\\big|\\dfrac{1.00000-1.00000}{1.00000}\\big|\\cdot 100\\%=0\\%" "x=1"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment