Show that the sequence {ππ} where ππ(π₯) = ππ₯(1 β π₯)
π does not converge uniformly on [0, 1].
Show that the sequence {ππ} where ππ(π₯) = ππ₯(1 β π₯)πΒ
does not converge uniformly on [0, 1].
Solution. Find the limit function "f(x)=\\lim\\limits_{n\\to\\infty}f_n(x)=0," where "\\lim\\limits_{n\\to\\infty}nx(1-x)^n=\\lim\\limits_{n\\to\\infty}\\frac{nx}{(1-x)^{-n}}=[\\frac{\\infty}{\\infty}]=-\\lim\\limits_{n\\to\\infty}\\frac{x(1-x)^{n}}{\\ln(1-x)}=0"
is found by Lopital-Bernoulli rule. According to the criterion of uniform
convergence, functional sequence "f_n(x)=nx(1-x)^n" does not
converge uniformly on [0,1]. Really, "\\lim\\limits_{n\\to\\infty}\\sup\\limits_{0\\le x\\le 1}|f(x)-f_n(x)|="
"\\lim\\limits_{n\\to\\infty}\\sup\\limits_{0\\le x\\le 1}(nx(1-x)^n)=" "\\lim\\limits_{n\\to\\infty}(1-\\frac{1}{n+1})^{n+1}=\\frac{1}{e}\\ne 0."
Answer: "f_n(x)=nx(1-x)^n" does not converge uniformly on [0,1].
Comments
Leave a comment