Answer to Question #348498 in Real Analysis for Nikhil rawat

Question #348498

Check whether or not the function f, defined on R by


f(x) = { 3x^2sin(1/2x), when x≠0


{ 0 ,when x=0


is derivable on R. If it is, is f' continuous at x=0? If f is not derivable , then define a derivable function on R

1
Expert's answer
2022-06-07T00:27:54-0400

Apply the Squeeze Theorem:


"-1\\le\\sin(1\/2x)\\le1, x\\in \\R"

Then


"-3x^2\\le3x^2\\sin(1\/2x)\\le3x^2, x\\in \\R"

We see that


"\\lim\\limits_{x\\to0}(-3x^2)=0=\\lim\\limits_{x\\to0}(3x^2)"

Then by the Squeeze Theorem


"\\lim\\limits_{x\\to0}(3x^2\\sin(1\/2x))=0"

"\\lim\\limits_{x\\to0}(3x^2\\sin(1\/2x))=0=f(0)"

The function "f(x)" is continuous on "\\R."


Apply the Squeeze Theorem:


"-1\\le\\sin(1\/2h)\\le1, h\\in \\R"

Then


"-3h\\le3h\\sin(1\/2h)\\le3h, h\\in \\R"

We see that


"\\lim\\limits_{h\\to0}(-3h)=0=\\lim\\limits_{h\\to0}(3h)"

Then by the Squeeze Theorem


"\\lim\\limits_{h\\to0}(\\dfrac{f(0+h)-f(0)}{h})=\\lim\\limits_{h\\to0}(\\dfrac{3h^2\\sin(1\/2h)}{h})"

"=\\lim\\limits_{h\\to0}(3h\\sin(1\/2h))=0=f'(0)"

The function "f(x)" is derivable on "\\R."


"f'(x)=6x\\sin(1\/2x)+3x^2\\cos(1\/2x)(-\\dfrac{1}{2x^2})"

"=6x\\sin(1\/2x)-\\dfrac{3}{2}\\cos(1\/2x)"

"\\lim\\limits_{x\\to0}(\\cos(1\/2x))=\\text{does not exist}"

If "x_n=\\dfrac{1}{4\\pi n}" then "\\cos(1\/2x_n)=1, n\\to \\infin"


If "x_n=\\dfrac{1}{\\pi+2\\pi n}" then "\\cos(1\/2x_n)=0, n\\to \\infin"


Therefore "\\lim\\limits_{x\\to0}(f'(x))=\\text{does not exist}."

The function "f'(x)" is not continuous on "\\R."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS