Answer to Question #95334 in Real Analysis for Rajni

Question #95334
Let f: [-5,5]-->R be defined by f(x) =5[x] +x^2 , where [x] denotes the greatest integer function . Show that this function is integrable .Is this function also differentiable ? Justify your answer ?
1
Expert's answer
2019-10-01T11:06:22-0400

"\\int\\limits_{-5}^5f(x)dx=\\int\\limits_{-5}^5x^2dx+5\\int\\limits_{-5}^5[x]dx". The integral "\\int\\limits_{-5}^5x^2dx" exists. Show that integral "\\int\\limits_{-5}^5[x]dx" also exists.

"\\int\\limits_{-5}^5[x]dx=\\sum\\limits_{k=-5}^4\\int\\limits_k^{k+1}[x]dx=\\sum\\limits_{k=-5}^4\\int\\limits_k^{k+1}kdx" , so integral "\\int\\limits_{-5}^5[x]dx" exists.

"f" is not differentiable in "[-4,5]\\cap\\mathbb Z", because left derivative of "f" in this set do not exist .

Indeed, let "k\\in[-4,5]\\cap\\mathbb Z" , so left derivative in point "k" is"\\lim\\limits_{x\\to 0+}\\frac{f(k)-f(k-x)}{x}=\\lim\\limits_{x\\to 0+}\\frac{5[k]+k^2-5[k-x]-(k-x)^2}{x}="

"=\\lim\\limits_{x\\to 0+}\\frac{5k+k^2-5[k-x]-k^2+2kx-x^2}{x}=\\lim\\limits_{x\\to 0+}\\frac{5k-5[k-x]+2kx-x^2}{x}="

"=2k+5\\lim\\limits_{x\\to 0+}\\frac{k-[k-x]}{x}"

If "x\\in (0,1)" , then "[k-x]=k-1" , so "\\lim\\limits_{x\\to 0+}\\frac{k-[k-x]}{x}=\\lim\\limits_{x\\to 0+}\\frac{k-(k-1)}{x}=+\\infty"

So we obtain that left derivatives of "f" in "[-4,5]\\cap\\mathbb Z" equal "+\\infty" , that is, do not exist.

Answer: "f" is integrable, but not differentiable.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog