Answer to Question #343635 in Statistics and Probability for Rohit

Question #343635

f(x) = kx * e ^ (- x / 2); k is a constant, x > 0 a) Find the value of k for f(x) to be a valid probability function


1
Expert's answer
2022-05-23T16:16:40-0400
"\\displaystyle\\int_{-\\infin}^{\\infin}f(x)dx=\\displaystyle\\int_{0}^{\\infin}kxe^{-x\/2}dx=1"

"\\int xe^{-x\/2}dx"

"u=x, du=dx"

"dv=e^{-x\/2}dx, v=-2e^{-x\/2}"

"\\int xe^{-x\/2}dx=-2xe^{-x\/2}+2\\int e^{-x\/2}dx"

"=-2xe^{-x\/2}-4e^{-x\/2}+C"

"\\displaystyle\\int_{0}^{\\infin}kxe^{-x\/2}dx=k\\lim\\limits_{t\\to \\infin}\\displaystyle\\int_{0}^{t}xe^{-x\/2}dx"

"=k\\lim\\limits_{t\\to \\infin}[-2xe^{-x\/2}-4e^{-x\/2}]\\begin{matrix}\n t \\\\\n 0\n\\end{matrix}"

"=k(-0-0-(-0-4))=4k=1"

"k=\\dfrac{1}{4}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog