Answer to Question #122830 in Vector Calculus for Ojugbele Daniel

Question #122830
If F=A×(B×C) where A=5it^2 + (3t-2)j + 6tk; B=2i+4tj+3(1-t)k and C=4ti+5jt^2 -3tk evaluate integral of Fdt with limits zero to one.
1
Expert's answer
2020-06-23T12:04:19-0400
"\\vec{A}=5t^2\\vec{i}+(3t-2)\\vec{j}+6t\\vec{k}""\\vec{B}=2\\vec{i}+4t\\vec{j}+3(1-t)\\vec{k}""\\vec{C}=4t\\vec{i}+5t^2\\vec{j}-3t\\vec{k}"

in a right hand coordinate system:


"\\vec{D}=\\vec{B}\\times\\vec{C}=(B_yC_z-B_zC_y)\\vec{i}+(B_zC_x-B_xC_z)\\vec{j}+(B_xC_y-B_yC_x)\\vec{k}=""(15t^3-25t^2)\\vec{i}+(18t-12t^2)\\vec{j}-6t^2\\vec{k}""\\vec{F}=\\vec{A}\\times(\\vec{B}\\times\\vec{C})=\\vec{A}\\times\\vec{D}=""(A_yD_z-A_zD_y)\\vec{i}+(A_zD_x-A_xD_z)\\vec{j}+(A_xD_y-A_yD_x)\\vec{k}=""(54t^3-96t^2)\\vec{i}+(120t^4-162t^3)\\vec{j}+(201t^3-105t^4-54t^2)\\vec{k}"

"\\underset{0}{\\overset{1}{\\int}}\\vec{F}dt=""\\underset{0}{\\overset{1}{\\int}}((54t^3-96t^2)\\vec{i}+(120t^4-162t^3)\\vec{j}+(201t^3-105t^4-54t^2)\\vec{k})dt=""\\vec{i}\\underset{0}{\\overset{1}{\\int}}(54t^3-96t^2)dt+\\vec{j}\\underset{0}{\\overset{1}{\\int}}(120t^4-162t^3)dt+\\vec{k}\\underset{0}{\\overset{1}{\\int}}(201t^3-105t^4-54t^2)dt=""\\vec{i}(\\frac{27t^4}{2}-32t^3)\\mid_{0}^1+\\vec{j}(24t^5-\\frac{81t^4}{2})\\mid_{0}^1+\\vec{k}(\\frac{201t^4}{4}-21t^5-18t^3)\\mid_{0}^1=""-\\frac{37}{2}\\vec{i}-\\frac{33}{2}\\vec{j}+\\frac{45}{4}\\vec{k}"

Answer:

"\\underset{0}{\\overset{1}{\\int}}\\vec{F}dt=-\\frac{37}{2}\\vec{i}-\\frac{33}{2}\\vec{j}+\\frac{45}{4}\\vec{k}"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS