According to https://en.wikipedia.org/wiki/Electric_potential_energy#Energy_stored_in_a_system_of_three_point_charges
the potential energy of the system can be calculated as
"U_E = k\\left( \\dfrac{q_1q_2}{r_{12}} +\\dfrac{q_1q_3}{r_{13}} +\\dfrac{q_2q_3}{r_{23}}\\right)."
The distance between 1 and 2 charges is "r_{12} = \\sqrt{(x_1-x_2)^2 + (y_1-y_2)^2} = \\sqrt{(0-3)^2+(4-0)^2} = 5\\,\\mathrm{cm}=0.05\\,\\mathrm{m}."
The distance between 1 and 3 charges is "r_{13} = 4\\,\\mathrm{cm} = 0.04\\,\\mathrm{m}."
The distance between 2 and 3 charges is "r_{23} = 3\\,\\mathrm{cm} = 0.03\\,\\mathrm{m}."
So
"U_E = 9\\cdot10^9\\,\\mathrm{Nm^2\/C^2}\\cdot\\left( \\dfrac{2\\cdot10^{-8}\\,\\mathrm{C}\\cdot4\\cdot10^{-8}\\,\\mathrm{C}}{0.05\\,\\mathrm{m}} + \\dfrac{2\\cdot10^{-8}\\,\\mathrm{C}\\cdot1\\cdot10^{-8}\\,\\mathrm{C}}{0.04\\,\\mathrm{m}} + \\dfrac{4\\cdot10^{-8}\\,\\mathrm{C}\\cdot1\\cdot10^{-8}\\,\\mathrm{C}}{0.03\\,\\mathrm{m}}\\right) = 3.09\\cdot10^{-4}\\,\\mathrm{J}."
Comments
Leave a comment