Answer to Question #235489 in Electric Circuits for Ahmad

Question #235489
A charge of 1μC is situated at the origin of the xy plane. A 3μC charge is placed at (1,2), a -4μC charge is placed at (-3,-5) and a -5μC charge is placed at (2,-4). Determine the force felt by the 1μC due to the presence of the other charges.
1
Expert's answer
2021-09-13T11:01:58-0400

To analyze the system we have to identify the charges:


"q_1=+1\\, \\mu C=1\\times10^{-6}\\,C\n\\\\ q_2=+3\\, \\mu C=3\\times10^{-6}\\,C\n\\\\ q_3=-4\\, \\mu C=-4\\times10^{-6}\\,C\n\\\\ q_4=-5\\, \\mu C=-5\\times10^{-6}\\,C"


We also proceed to define the direction and unit vectors:


"r_{1\/2}=r_{1}-r_{2}=(0,0)-(1,2)\n\\\\ r_{1\/2}=(-1,-2)\n\\\\ \\widehat{r_{1\/2}}=\\dfrac{(-1,-2)}{\\sqrt{1^2+2^2}}=(-\\frac{1}{\\sqrt{5}},-\\frac{2}{\\sqrt{5}})\n\\\\ r_{1\/3}=r_{1}-r_{3}=(0,0)-(-3,-5)\n\\\\ r_{1\/3} =(3,5)\n\\\\ \\widehat{r_{1\/3}}=\\dfrac{(3,5)}{\\sqrt{3^2+5^2}}=(\\frac{3}{\\sqrt{34}},\\frac{5}{\\sqrt{34}})\n\\\\ r_{1\/4}=r_{1}-r_{3}=(0,0)-(2,-4)\n\\\\ r_{1\/4}=(-2,4)\n\\\\ \\widehat{r_{1\/4}}=\\dfrac{(-2,4)}{\\sqrt{2^2+4^2}}=(-\\frac{1}{\\sqrt{5}},\\frac{2}{\\sqrt{5}})"


After that we proceed to use Coulomb's law ("F=k\\cfrac{q_iq_j}{r^2_{ij}}\\,\\widehat{r_{ij}}" ) for each of the pairs (between charges q1 and q2, charges q1 and q3, and charges q1 and q4) and then we can find the total force felt by q1:


"F_T=F_{1\/2}+F_{1\/3}+F_{1\/4}\n\\\\ F_T=kq_1 \\Big( \\dfrac{q_2}{r^2_{1\/2}} \\, \\widehat{r_{1\/2}} +\\dfrac{q_3}{r^2_{1\/3}} \\, \\widehat{r_{1\/3}}+\\dfrac{q_4}{r^2_{1\/4}} \\, \\widehat{r_{1\/4}} \\Big)\n\\\\ F_T=(9\\times10^9\\frac{Nm^2}{C^2})(10^{-6}\\,C) \\Bigg( \\dfrac{(3\\times10^{-6}\\,C)}{(1^2+2^2)\\,m^2}(-\\frac{1}{\\sqrt{5}},-\\frac{2}{\\sqrt{5}}) +...\n\\\\...+\\dfrac{(-4\\times10^{-6}\\,C)}{(3^2+5^2)\\,m^2} (\\frac{3}{\\sqrt{34}},\\frac{5}{\\sqrt{34}})+\\dfrac{(-5\\times10^{-6}\\,C)}{(2^2+4^2)\\,m^2}(-\\frac{1}{\\sqrt{5}},\\frac{2}{\\sqrt{5}}) \\Bigg)"


We proceed with the substitution to confirm the vector that describes the force felt by q1:


"\\\\ F_T=(9\\times10^{-3}\\,N) \\Big( (\\frac{3}{5}) (-\\frac{1}{\\sqrt{5}},-\\frac{2}{\\sqrt{5}})+...\n\\\\...+(-\\frac{2}{17})(\\frac{3}{\\sqrt{34}},\\frac{5}{\\sqrt{34}})+(-\\frac{1}{4})(-\\frac{1}{\\sqrt{5}},\\frac{2}{\\sqrt{5}}) \\Big)\n\\\\ F_T=(9\\times10^{-3}\\,N) \\Big( (-\\frac{3}{5\\sqrt{5}},-\\frac{6}{5\\sqrt{5}})+...\n\\\\...+(-\\frac{6}{17\\sqrt{34}},-\\frac{10}{17\\sqrt{34}})+(\\frac{1}{4\\sqrt{5}},-\\frac{1}{2\\sqrt{5}}) \\Big)\n\\\\F_T= (9\\,mN) \\Big( -\\frac{3}{5\\sqrt{5}}-\\frac{6}{17\\sqrt{34}}+\\frac{1}{4\\sqrt{5}}\\,,...\n\\\\...\\,, -\\frac{6}{5\\sqrt{5}} -\\frac{10}{17\\sqrt{34}} -\\frac{1}{2\\sqrt{5}} \\Big)\n\\\\ F_T \\approx (9\\times10^{-3}\\,N) \\Big( -0.217,-0.861 \\Big)\n\\\\ F_T \\approxeq \\Big( -1.953,-7.750 \\Big)\\times10^{-3}\\,N"


After we find the force vector, we proceed to calculate its magnitude:


"\\\\ F_T = \\sqrt{ \\Big( (-1.953\\times10^{-3}N)^2+(-7.750\\times10^{-3}N)^2) \\Big)}\n\\\\F_T=7.992\\times10^{-3}\\,N"


In conclusion, the force felt by the 1μC due to the presence of the other charges is approximately 7.992 X 10-3 N or 7.992 mN (miliNewtons).
Reference:

  • Sears, F. W., & Zemansky, M. W. (1973). University physics.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog