Answer to Question #225317 in Electricity and Magnetism for Anuj

Question #225317
Question 2

(a) Given that A ~ = (x + 2y + 4z)ˆ

i + (2x - 3y- z)ˆj +(4x-y + 2z)kˆ

(i). Show that the vector field A ~ is irrotational



(ii). Find the scalar potential φ such that A~ = ∇φ, if φ(0, 0, 0) = 1
1
Expert's answer
2021-08-16T09:52:22-0400

ANSWER


(i) The vector field A\overrightarrow { A } is irrotational becausecurl A= ×A=ijkxyz(x+2y+4z)(2x3yz)(4xy+2z)=curl\ \overrightarrow { A } =\ \nabla \times \overrightarrow { A } =\left| \begin{matrix} \overrightarrow { i } & \overrightarrow { j } & \overrightarrow { k } \quad \\ \frac { \partial }{ \partial x } & \frac { \partial }{ \partial y } & \frac { \partial }{ \partial z } \\ (x+2y+4z) & \left( 2x-3y-z \right) & \left( 4x-y+2z \right) \end{matrix} \right| =

=[(4xy+2z)y(2x3yz)z]i+[(x+2y+4z)z(4xy+2z)x]j+[(2x3yz)x(x+2y+4z)y]k==(1+1)i+(44)j+(22)k=0i+0j+0k.=\left[ \frac { \partial \left( 4x-y+2z \right) }{ \partial y } -\frac { \partial \left( 2x-3y-z \right) }{ \partial z } \right] \overrightarrow { i } +\left[ \frac { \partial (x+2y+4z) }{ \partial z } -\frac { \partial \left( 4x-y+2z \right) }{ \partial x } \right] \overrightarrow { j } +\left[ \frac { \partial \left( 2x-3y-z \right) }{ \partial x } -\frac { \partial (x+2y+4z) }{ \partial y } \right] \overrightarrow { k } = \\ =\left( -1+1 \right) \overrightarrow { i } +\left( 4-4 \right) \overrightarrow { j } +\left( 2-2 \right) \overrightarrow { k } =0\overrightarrow { i } +0\overrightarrow { j } +0\overrightarrow { k } .\\

(ii) Therefore , there is scalar potential φ\varphi such that A=φ\overrightarrow { A } =\nabla \varphi :

φx=x+2y+4zφ(x,y,z)=x22+2xy+4zx+α(y,z)φy=2x+α(y,z)y\frac { \partial \varphi }{ \partial x } =x+2y+4z\Rightarrow \varphi \left( x,y,z \right) =\frac { { x }^{ 2 } }{ 2 } +2xy+4zx+\alpha (y,z)\Rightarrow \frac { \partial \varphi }{ \partial y } =2x+\frac { \partial \alpha (y,z) }{ \partial y } \\

Since φy=2x3yz\frac { \partial \varphi }{ \partial y } =2x-3y-z\\ , then 2x+α(y,z)y=2x3yz2x+\frac { \partial \alpha (y,z) }{ \partial y } =2x-3y-z\\ or α(y,z)=3y22zy+ β(z)\alpha (y,z)=-\frac { 3{ y }^{ 2 } }{ 2 } -zy+\ \beta (z)\\ and φ(x,y,z)=x22+2xy+4zx3y22zy+ β(z)\varphi \left( x,y,z \right) =\frac { { x }^{ 2 } }{ 2 } +2xy+4zx-\frac { 3{ y }^{ 2 } }{ 2 } -zy+\ \beta (z)\\ .

Thus, φz=4xy+β(z)=4xy+2z\frac { \partial \varphi }{ \partial z } =4x-y+{ \beta }^{ ' }{ (z) }=4x-y+2z\\ β(z)=2z,β(z)= z2+γ\Rightarrow { \beta }^{ ' }{ (z)=2z },\quad \beta (z)=\ { z }^{ 2 }+\gamma \\ .

Finally, we have φ(x,y,z)=x22+2xy+4zx3y22zy+z2+γ\varphi \left( x,y,z \right) =\frac { { x }^{ 2 } }{ 2 } +2xy+4zx-\frac { 3{ y }^{ 2 } }{ 2 } -zy+{ z }^{ 2 }+\gamma \\ .

Since φ(0,0,0)=1\varphi \left( 0,0,0 \right) =1 ,then γ=1 .\gamma =1\ .\\ So

φ(x,y,z)=x22+2xy+4zx3y22zy+z2+1.\varphi \left( x,y,z \right) =\frac { { x }^{ 2 } }{ 2 } +2xy+4zx-\frac { 3{ y }^{ 2 } }{ 2 } -zy+{ z }^{ 2 }+1.\\

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment