Answer to Question #251930 in Electricity and Magnetism for Josh

Question #251930

Two charges (+3µC on the left of the -5µC) are separated by a distance of 5um on a horizontal line. Point P is located 10µm above the 3µC charge.


a) Draw a sketch of the setting discussed in the question above. Make sure to label all points discussed. (2marks)


b) Calculate the field at point P (3marks)


c) Calculate the potential at point P 

(1 mark)


1
Expert's answer
2021-10-18T11:13:48-0400

(a) Let "q_1=+3\\ \\mu C", "q_2 = -5\\ \\mu C". Let the distance between charges "q_1" and "q_2" be "r_{12}=5\\ \\mu m", the distance from the charge "q_1" to the point P above it be "r_{1P}=10\\ \\mu m". Let's draw a sketch:



(b) The electric field due to point charge "q_1" at point P directed upward (away from the charge "q_1"), the electric field due to point charge "q_2" at point P directed toward charge "q_2".

Let’s first find the magnitudes of the electric fields "E_1" and "E_2":


"E_1=\\dfrac{k|q_1|}{r_{1P}^2}=\\dfrac{9.0\\cdot10^{9}\\ \\dfrac{N\\cdot m^2}{C^2}\\cdot|3\\cdot10^{-6}\\ C|}{(10\\cdot10^{-6}\\ m)^2}=2.7\\cdot10^{14}\\ \\dfrac{N}{C},""E_2=\\dfrac{k|q_2|}{r_{2P}^2}=\\dfrac{9.0\\cdot10^{9}\\ \\dfrac{N\\cdot m^2}{C^2}\\cdot|-5\\cdot10^{-6}\\ C|}{\\sqrt{(10\\cdot10^{-6}\\ m)^2+(5\\cdot10^{-6}\\ m)^2}}=4.0\\cdot10^{9}\\ \\dfrac{N}{C}."

Let’s find projections of the fields "E_1" and "E_2" on axis "x"- and "y":


"E_{1x}=0, E_{1y}=E_1=2.7\\cdot10^{14}\\ \\dfrac{N}{C},""E_{2x}=E_2cos\\theta=E_2\\dfrac{r_{1P}}{r_{2P}},""E_{2x}=4.0\\cdot10^{9}\\ \\dfrac{N}{C}\\cdot\\dfrac{10\\cdot10^{-6}\\ m}{\\sqrt{(10\\cdot10^{-6}\\ m)^2+(5\\cdot10^{-6}\\ m)^2}}=3.6\\cdot10^9\\ \\dfrac{N}{C},""E_{2y}=E_2sin\\theta=E_2\\dfrac{r_{12}}{r_{2P}},""E_{2y}=4.0\\cdot10^{9}\\ \\dfrac{N}{C}\\cdot\\dfrac{5\\cdot10^{-6}\\ m}{\\sqrt{(10\\cdot10^{-6}\\ m)^2+(5\\cdot10^{-6}\\ m)^2}}=1.78\\cdot10^9\\ \\dfrac{N}{C}."

Then, we can find "x"- and "y"-components of the net electric field at point P:


"E_x=E_{2x}=3.6\\cdot10^9\\ \\dfrac{N}{C},""E_y=E_{1y}-E_{2y}=2.7\\cdot10^{14}\\ \\dfrac{N}{C}-1.78\\cdot10^9\\ \\dfrac{N}{C}=2.69\\cdot10^{14}\\ \\dfrac{N}{C}."

We can find the net electric field at point P from the Pythagorean theorem:

"E_{net}=\\sqrt{E_x^2+E_y^2}=\\sqrt{(3.6\\cdot10^9\\ \\dfrac{N}{C})^2+(2.69\\cdot10^{14}\\ \\dfrac{N}{C})^2}=2.69\\cdot10^{14}\\ \\dfrac{N}{C}."

We can find the direction of the net electric field from the geometry:


"\\theta=tan^{-1}(\\dfrac{E_y}{E_x})=tan^{-1}(\\dfrac{2.69\\cdot10^{14}\\ \\dfrac{N}{C}}{3.6\\cdot10^9\\ \\dfrac{N}{C}})=89.9^{\\circ}."

(c) We can find the potential at point P as follows:


"V=V_1+V_2=\\dfrac{kq_1}{r_{1P}}+\\dfrac{kq_2}{r_{2P}},""V=\\dfrac{9.0\\cdot10^{9}\\ \\dfrac{N\\cdot m^2}{C^2}\\cdot3\\cdot10^{-6}\\ C}{10\\cdot10^{-6}\\ m}+\\dfrac{9.0\\cdot10^{9}\\ \\dfrac{N\\cdot m^2}{C^2}\\cdot(-5\\cdot10^{-6}\\ C)}{\\sqrt{(10\\cdot10^{-6}\\ m)^2+(5\\cdot10^{-6}\\ m)^2}},""V=-1.32\\cdot10^{9}\\ V."

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog