Answer to Question #278414 in Mechanics | Relativity for adnan

Question #278414

 

 

1.    An ideal Otto cycle has a compression ratio of 7. At the beginning of the compression

process, air is at 107 kPa and 19°C, and 750 kJ/kg of heat is transferred to air during

the constant-volume heat-addition process. Accounting for the variation of specific

heats of air with temperature, determine (a) the maximum temperature and pressure

that occur during the cycle, (b) the net work output, (c) the thermal efficiency, and

(d) the mean effective pressure for the cycle.

(e) Also, determine the power output from the cycle, in kW, for an engine speed

of 3700 rpm (rev/min). Assume that this cycle is operated on an engine that has four

cylinders with a total displacement volume of 1.9 L.


1
Expert's answer
2021-12-12T16:41:35-0500

a)

The maximum temperature and pressure in an Otto cycle occur at the end of the constant-volume heat-addition process.

determine the temperature and pressure of air at the end of the isentropic compression process , using data from table of ideal-gas properties of air:

T1=292 Ku1=206.91 kJ/kg,vr1=676.1T_1=292\ K\to u_1=206.91\ kJ/kg,v_{r1}=676.1

isentropic compression of an ideal gas:

vr2/vr1=1/rvr2=vr1/r=676.1/7=96.59v_{r2}/v_{r1}=1/r \to v_{r2}=v_{r1}/r=676.1/7=96.59

T2=620 K,u2=450.09 kJ/kgT_2=620\ K,u_2=450.09\ kJ/kg


P2=P1T2v1T1v2=1077620292=1590 kPaP_2=P_1\frac{T_2v_1}{T_1v_2}=107\cdot7\cdot\frac{620}{292}=1590\ kPa


constant-volume heat addition:

u3=qin+u2=750+450.09=1200.09 kJ/kgu_3=q_{in}+u_2=750+450.09=1200.09\ kJ/kg

T3=1500 K,vr3=7.152T_3=1500\ K,v_{r3}=7.152


P3=P2T3v2T2v3=15901500620=3847 kPaP_3=P_2\frac{T_3v_2}{T_2v_3}=1590\cdot\frac{1500}{620}=3847\ kPa


b)

isentropic expansion of an ideal gas:

vr4=rvr3=77.152=50.064v_{r4}=rv_{r3}=7\cdot7.152=50.064

T4=780 K,u4=576.12 kJ/kgT_4=780\ K,u_4=576.12\ kJ/kg

constant-volume heat rejection:

qout=u4u1=576.12206.91=369.21 kJ/kgq_{out}=u_4-u_1=576.12-206.91=369.21\ kJ/kg

wnet=qinqout=750369.21=380.79 kJ/kgw_{net}=q_{in}-q_{out}=750-369.21=380.79\ kJ/kg


c)

 thermal efficiency of the cycle:

ηth=wnet/qin=380.79/750=0.51\eta_{th}=w_{net}/q_{in}=380.79/750=0.51

Under the cold-air-standard assumptions (constant specific heat values at room temperature):

ηth,Otto=1r1k=1711.4=0.54\eta_{th,Otto}=1-r^{1-k}=1-7^{1-1.4}=0.54


d)

mean effective pressure:

MEP=wnetvmaxvmin=wnetv1(11/r)MEP=\frac{w_{net}}{v_{max}-v_{min}}=\frac{w_{net}}{v_{1}(1-1/r)}


v1=RT1/P1=0.287292/107=0.783v_1=RT_1/P_1=0.287\cdot292/107=0.783 m3/kg


MEP=380.790.783(11/7)=567MEP=\frac{380.79}{0.783(1-1/7)}=567 kPa


e)

The total air mass taken by all four cylinders when they are charged:

m=Vd/v1=0.0019/0.783=0.0024m=V_d/v_1=0.0019/0.783=0.0024 kg

net work produced by the cycle:

Wnet=mwnet=0.0024380.79=0.924W_{net}=mw_{net}=0.0024\cdot380.79=0.924 kJ

Noting that there are two revolutions per thermodynamic cycle in a fourstroke engine:

nrev=2n_{rev}=2 rev/cycle

power produced by the engine:

W=Wnetn/nrev=0.9243700/(260)=28.49W=W_{net}n/n_{rev}=0.924\cdot3700/(2\cdot60)=28.49 kW


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog