The total energy of the system in the first situation will be (for equal "L" and all "n=1"):
"E_{tot}=N\\cdot\\frac{h^2}{8m}\\Big(\\frac{n_x^2}{L_x^2}+\\frac{n_y^2}{L_y^2}+\\frac{n_z^2}{L_z^2}\\Big)=\\frac{3Nh^2}{8mL^2}."
By analogy, for maximum two particles at each level the energy is
"E_{g.s.}=\\frac{3h^2}{4mL^2}." The Fermi energy for two particles ("V=L^3,\\space n=N\/2") at each level is
"E_F=\\frac{h^2}{8\\pi^2 m}\\cdot\\Big(3\\pi^2\\frac{n}{V}\\Big)^{2\/3}=\\frac{h^2}{8mL}\\cdot\\Big(\\frac{3N}{2\\pi^2}\\Big)^{2\/3}."
Comments
Leave a comment